
RCDEVS IDENTITY PROVIDER
AND INTEGRATIONSWebADM and OpenOTP are trademarks of

RCDevs. All further trademarks are the
property of their respective owners.

No guarantee is given for the correctness of
the information contained in this document.
Please send any comments or corrections to
info@rcdevs.com.

The speci cations and information in this
document are subject to change without
notice. Companies, names, and data used in
examples herein are ctitious unless otherwise
noted. This document may not be copied or
distributed by any means, in whole or in part,
for any reason, without the express written
permission of RCDevs Security.

Limited Warranty - Copyright (c) 2010-2024 RCDevs Security SA. All Rights
Reserved. www.rcdevs.com

mailto:info@rcdevs.com
file://www.rcdevs.com

This document will present you how to use WebADM as Identity Provider (IDP) with different Service Provider (SP) which will

consume OpenOTP for authentication processes. We will also see how we can configure and return different information per

service provider through users/groups and client policies.

The installation of OpenID/SAMLOpenID/SAML IdP is straightforward and only consists of running the self-installer or install the openidopenid

package from RCDevs repositories and configure the application in WebADM.

You do not have to modify any files in the OpenID install directory! The web application configurations are managed and stored

in the LDAP configured with by WebADM. To configure OpenID/SAML provider, your must login on WebADM as super

administrator and go to the ApplicationsApplications menu. Click CONFIGURECONFIGURE on OpenID/SAML to enter the web-based

configuration.

OpenID/SAML application logs are accessible in the DatabasesDatabases menu in WebADM.

Note: To be able to use OpenID/SAML, any LDAP usersʼ accounts must be a activated in WebADM.

You can embed the SAML & OpenIDSAML & OpenID Webapp on your website in an HTML iFrame or Object.

Once your IDP global configuration is done, the best practice is to create Client policyClient policy for each Service Provider you are

configuring with your IDP. That will be describe later in that documentation.

First, we need a WebADM server with MFA Authentication Server and OpenID & SAML Provider packages installaled.

Once the server is up and running, we can configure it as a SAML Identity Provider (IdP).

Login to the WebADM Admin PortalWebADM Admin Portal and navigate to ApplicationsApplications tab > Singe Sign-OnSinge Sign-On >

OpenID & SAML ProviderOpenID & SAML Provider . Click then REGISTERREGISTER button. The LDAP object containing the IDP configuration is created.

 RCDevs Identity Provider and integrations
SSO Federation SAML OpenID Nextcloud Guacamole Grafana GitLab OnlyOffice Identity Provider Service Provider IDP SP

1. Overview

#Example
< />object data="https://<webadm_addr>/webapps/openid?inline=1"

2. WebADM IDP configuration

http://127.0.0.1/tags/sso
http://127.0.0.1/tags/federation
http://127.0.0.1/tags/saml
http://127.0.0.1/tags/openid
http://127.0.0.1/tags/nextcloud
http://127.0.0.1/tags/guacamole
http://127.0.0.1/tags/grafana
http://127.0.0.1/tags/gitlab
http://127.0.0.1/tags/onlyoffice
http://127.0.0.1/tags/identity-provider
http://127.0.0.1/tags/service-provider
http://127.0.0.1/tags/idp
http://127.0.0.1/tags/sp

Once the appliaction is registered, click on CONFIGURECONFIGURE button to configure the IDP:

You are now in the global configuration of your OpenID & SAML Identity ProviderOpenID & SAML Identity Provider .

2.1 Web Application Settings and Common Features

Configure the setting you would like to apply. On my side, I published the Web application on my WAProxy, hidden the

Domain ListDomain List because multiple domains are available on my infrastructure and I do not want that information displayed on

my IDP login page. I also enforced a default domain but remember that this can be configured at the Client PolicyClient Policy level.

We are now entering in the Common FeaturesCommon Features section.

The Issuer URLIssuer URL or EntityIDEntityID is a unique identifier that is used to identify a specific entity in the SAML authentication

and authorization protocol. A SAML entity ID is typically a URL or URI that is assigned to the entity, and it is used to identify the

entity in SAML messages and metadata. That setting will refer to IssuerIssuer value for OpenID. In that documentation, I

configured my Issuer URLIssuer URL with the public DNS name targeting my WebADM infrastructure. In most of the case, the IDP

URL will be a public URL which can be easily proxied with WebADM Publishing Proxy or with another Reverse Proxy solution.

The Name IdentifierName Identifier setting is the unique identifier of the user. It should be non-volatile and opaque. It should not

contain personal information or information that is changeable over time, such as the userʼs name or email address. The

accepted Name IdentifierName Identifier may vary according to the Service Provider you are integrating and for that reason it can

make more sens to configure it per Service Provider Client PolicyClient Policy .

The SSO Session TimeSSO Session Time define the time for a user session remains valid on the IDP.

The Allow ManagementAllow Management setting provides the possibility to your end-users to enable/disable the SAML/OpenID usage for

their account and configure their SSO Session timeout. It is recommanded to disabled that setting by default. Example below

http://127.0.0.1/howtos/waproxy/waproxy/

of end-user view once authenticated on the IDP and when that setting is enabled:

The SSO Session TimeSSO Session Time setting allow the transparent redirection to an Service Provider once the user is authenticated.

The Returned Groups FilterReturned Groups Filter is a regular expression which can be configured in order to filter groups returned in the

SAML or OpenID responses based on the RegEx match.

The Server CertificateServer Certificate and Server Private KeyServer Private Key settings are mandatory and will be used for request signing

purposes. Click EditEdit and GenerateGenerate buttons, then a certificate with WebADM internal PKI is issued.

Now, we have the IdP certificate, we click on ApplyApply and the Server CertificateServer Certificate and Private keyPrivate key will be auto filled

in the configuration. You can also issue a certificate with your Entreprise CA if desired.

The Common FeaturesCommon Features section is now configured.

We are now entering in the SAML dedicated configuration.

2.2 SAML Configuration

The Enable SAML UsageEnable SAML Usage setting enable the SAML configuration in order to implement SP through SAML.

The UserID MappingUserID Mapping setting is the attribut value used in the SAML response to return the user ID.

The Domain MappingDomain Mapping setting is the attribut value used in the SAML response to return the domain value. By default, the

WebADM domain name is returned based on the domain used to authenticate the user.

The Email MappingEmail Mapping setting is the attribut value used in the SAML response to return the usersʼ email value(s).

The Group MappingGroup Mapping setting is the attribut value used in the SAML response to return the user group memberships.

The Return attributesReturn attributes setting is the attribut value used in the SAML response to return a list of desired attributs. You

can also manipulate values returned. For example here, I returned in SAML response mobile, displayname sn attributs

retrieved from the LDAP account and in userprincipalname I put the user email value.

The Holder of KeyHolder of Key setting is used to include the user certificate and use ʻholder-of-keyʼ assertion confirmation method.

If not enabled or the user does not have a certificate, the method defaults to ʻbearerʼ.

The Sign Entire SAML ResponseSign Entire SAML Response setting is used to intirely sign the SAML response. This can be an option on some

service provider. By default, the IdP signs the XML assersion and the subject.

The Consumer URL ProtectionConsumer URL Protection is a security setting used to refuse SAML requests containing

AssertionConsumerServiceURL which do not match the Issuer URLIssuer URL hostname present in the same request.

The Consumer URL ExceptionConsumer URL Exception setting can be used when the AssertionConsumerServiceURL present in the SAML

request do not match the SP issuer URL.

example:

In that example, the AssertionConsumerService URL hostame (system.netsuite.com) do not match the Issuer hostname

(netsuite.com). I can then configure a Consumer URL ExceptionsConsumer URL Exceptions like this:

By default, the AssertionConsumerServiceURL is taken from the SAML request and is used by ther IDP after the user

authentication to send the response to the service provider. The AssertionConsumerServiceURL can be rewrite by client policies

if needed. If multiple AssertionConsumerServiceURL are available on your service provider, then you can also use the

Consumer URL ExceptionConsumer URL Exception and configure a regex that will match all URLs.

The Content Security HeadersContent Security Headers setting can be used to enforce content security header protection for POST

redirections.

You can now save your SAML configuration. The SAML metadata URL is accessible through WebADM servers and through

WAProxy servers if the Web Application is published through WAPRoxy:

Metadata URL from the WebADM server: https://webadm1.support.rcdevs.com/webapps/openid/metadata/

Metadata URL from the WAProxy: https://waproxy.support.rcdevs.com/ws/saml/

<?xml version="1.0" encoding="UTF-8"?>
 <saml2p:AuthnRequest AssertionConsumerServiceURL="https://system.netsuite.com/saml2/acs"

 Destination="https://waproxy.support.rcdevs.com/openid/index.php"
 ForceAuthn="false"
 ID="_184481c4dc4698ff64574278aa43d60"
 IsPassive="false"
 IssueInstant="2023-11-09T14:26:25.059Z"
 ProtocolBinding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Version="2.0"
 xmlns:saml2p="urn:oasis:names:tc:SAML:2.0:protocol">

http://www.netsuite.com/sp
<saml2:Issuer

xmlns:saml2="urn:oasis:names:tc:SAML:2.0:assertion"> </saml2:Issuer>
 <saml2p:NameIDPolicy AllowCreate="true"
 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress"
 SPNameQualifier="http://www.netsuite.com/sp" /></saml2p:AuthnRequest>

https://webadm1.support.rcdevs.com/webapps/openid/metadata/
https://waproxy.support.rcdevs.com/ws/saml/

The SAML clients (Service Providers) need to know about the SAML IdP endpoints. Most clients will accept the autoconfiguration

with an XML-based metadata URL. You can provide the previous URLs according to your scenario.

The configuration of OpenID service is very simple. Version 1.2x includes the support for OpenID-Connect and OAuth2.

To use your identity provider in OpenID-Connect mode, the client configuration must pass the scope ʻopenidʼ in the IdP requests.

The supported OpenID-Connect scopes are: basic, email, phone, profile and groups.

To use your identity provider in OAuth2 mode, the client must pass the scope ʻprofileʼ in the IdP requests.

This XML file does not appear to have any style information associated with it. The document tree is
shown below.

 <EntityDescriptor xmlns="urn:oasis:names:tc:SAML:2.0:metadata"
entityID="https://waproxy.support.rcdevs.com">

 <IDPSSODescriptor protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <KeyDescriptor use="signing">

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
<X509Data>

MIIDdTCCAl2gAwIBAgIBCTANBgkqhkiG9w0BAQsFADA0MRkwFwYDVQQDDBBXZWJBRE0gQ0EgIzIwMDM0MRcwFQYDVQQKDA5TdXBwb3J0IFJDRGV2czAeFw0yMTA2MDQwNzMzNDFaFw0yMjA2MDQwNzMzNDFaMIGPMSMwIQYDVQQDDBp3ZWJhZG0xLnN1cHBvcnQucmNkZXZzLmNvbTEPMA0GA1UEDQwGU0VSVkVSMRcwFQYDVQQKDA5SQ0RldnMgU3VwcG9ydDELMAkGA1UECwwCSVQxCzAJBgNVBAYTAkxVMRMwEQYDVQQHDApMdXhlbWJvdXJnMQ8wDQYDVQQIDAZCZWx2YWwwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDMG15m4VhS8vIEXWDVeuW7x6QItpnqd2DUR8kH2UHrYz7G+Ox8COHoVf/o5KiwTUOnWfdBP+yhn0gkavUQvm+9Q4Ca2akjuOEV7G4s3kkoQp0H24NSrMPChOobGMHLBuFo2NRhbhvU3S5jpXmShFdF6IPHfTTHf+xVZpFs77moa8IquJo9HD9EDx6HVxwC48051fha+dImGOTrDWcgCb34FPNOoBTEQ/vzyN6NIu+tljFQAROJqs/NllqoF8+DWPF3Dj5PplZrAuJ6jz29Inl2xTSz2FwbCqhxjBX7teteL88TuGxosqkd1L+gpdRmCReaKe4yuNTxno81tAM+iz8zAgMBAAGjNjA0MCUGA1UdEQQeMByCGndhcHJveHkuc3VwcG9ydC5yY2RldnMuY29tMAsGA1UdDwQEAwIF4DANBgkqhkiG9w0BAQsFAAOCAQEAeGwXTFNSCh6JnGdVIDSVj5NGRTTrF1iyCEKMDo1x6fJNCjUHjHIIv5nLzm+xanguCkFymFuwngT9+x3hDWAmCpOZO9ROrWXiCfHEF3LwPf5SqGKDpA+fvVyYeVOKhbUxRd25nUq7PTt2TYTA8UW0Twh80mkX+b4u2xa/fnyBmVthWFJTtYhGAO94n5eKhQsKk427mnVXtm8GlxK8flmOWl6ImJCUSONqP4WSSl5hj/smqzVpoISlhl9R9e3KXLD8V5jRpMxQ5agk5+foMQPsR3fcPWjNkm8CkDhnOyPdsPeRf/dKMCPA3Zw6haHaW+0IU7beMf1gAazE7sYq4sFm1w==<X509Certificate>

<!-- Cert Fingerprint (SHA1): 23c92977b9547dd71ea892f8dde895271b78c907 -->
<!-- Cert Fingerprint (SHA256):
0bc0fe361e37a4b9af080e6f194a621fe9b4e2f94853330c050667c127443e80 -->
<!-- Cert Fingerprint (MD5): 2643ed6f4569486969b6d1a880a5e44b -->
</X509Data>
</KeyInfo>
</KeyDescriptor>

 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://waproxy.support.rcdevs.com/openid/index.php"/>

 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://waproxy.support.rcdevs.com/openid/index.php"/>

 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://waproxy.support.rcdevs.com/openid/index.php"/>

 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://waproxy.support.rcdevs.com/openid/index.php"/>
</IDPSSODescriptor>
</EntityDescriptor>

 Important

Many SAML Service Providers will require your WebADM to be run with a trusted SSL certificate. To use your own trusted

certificate and key, please have a look on Trusted Certificate documentation.

2.3 OpenID Configuration

http://127.0.0.1/howtos/certificate/certificate/

If your client application needs the userʼs email address, you can additionally request the openid email scope.

The Allwed scopes must be enabled in the global configuration or per client policy in order to be returned to the service providers

which are requesting them in their request.

The OpenID metadata URL is accessible through WebADM servers and through WAProxy servers if the Web Application is

published through WAPRoxy:

Metadata URL from the WebADM server: https://webadm1.support.rcdevs.com/webapps/openid/.well-known/openid-

configuration

Metadata URL from the WAProxy: https://waproxy.support.rcdevs.com/ws/openid/

Which is returning the following in my scenario:

https://webadm1.support.rcdevs.com/webapps/openid/.well-known/openid-configuration
https://waproxy.support.rcdevs.com/ws/openid/

{
 : ,"issuer" "https://waproxy.support.rcdevs.com"
 : ,"authorization_endpoint" "https://waproxy.support.rcdevs.com/openid/index.php"
 : ,"token_endpoint" "https://waproxy.support.rcdevs.com/openid/index.php"
 : ,"userinfo_endpoint" "https://waproxy.support.rcdevs.com/openid/index.php"
 : ,"jwks_uri" "https://waproxy.support.rcdevs.com/openid/certs.php"
 : ["subject_types_supported"
 ,"public"
 "pairwise"
],
 : ["response_types_supported"
 ,"code"
 ,"token"
 "id_token"
],
 : ["response_modes_supported"
 ,"query"
 ,"fragment"
 "form_post"
],
 : ["id_token_signing_alg_values_supported"
 "RS256"
],
 : ["scope_supported"
 ,"basic"
 ,"openid"
 ,"email"
 ,"phone"
 ,"profile"
 "groups"
],
 : ["claims_supported"
 ,"sub"
 ,"email"
 ,"email_verified"
 ,"phone_number"
 ,"phone_number_verified"
 ,"preferred_username"
 ,"preferred_language"
 ,"given_name"
 ,"family_name"
 ,"name"
 ,"groups"
 "mfa-policy"
]
}

In this scenario, the authentication will be started directly from OpenID & SAML Provider web application. We will configure

WebADM to manage authentications with Amazon Web Service (AWS). Other Service providers are available but not shown in this

HowTo: GSuite, SalesForce, SugarCRM, Zimbra, GoToMeeting, GoToWebinar, GoToTraining and GoToAssist.

First, we save the SAML metadata in a file. For our IdP server, we find it in https://webadm.local/ws/saml/https://webadm.local/ws/saml/ .

We open AWS console > IAMIAM > Identity providersIdentity providers > _ Create ProviderCreate Provider :

We select SAMLSAML , add a name, insert the metadata file and click on Next StepNext Step :

We click on CreateCreate :

3. Configuration of a Service Provider

3.1 IDP initiated (SAML)

3.1.1 AWS SAML integration

3.1.1.1 SAML Configuration on AWS

Now, our IdP is added to AWS. We select RolesRoles :

We click on Create RoleCreate Role :

We click on SAMLSAML :

We select our SAML provider, select AWS Management Console accessAWS Management Console access and click on Next PermissionNext Permission :

We select a permission policy and click on Next: ReviewNext: Review .

We add a name and click on Create roleCreate role :

The role is now created, we can select it to see more details.

We need to activate IdP initiated authentication for AWS.

We open the configuration in WebADM GUI > ApplicationsApplications > Single Sign-onSingle Sign-on > CONFIGURECONFIGURE :

3.1.1.2 Configure WebADM IDP for AWS

We check Enable Application SSOEnable Application SSO and AmazonWSAmazonWS , we add AWS Account NumberAWS Account Number (a numerical value that you can

find in the ARN of the AWS role) and AWS Provider NameAWS Provider Name and apply:

We select the test user and click on WebADM settings: [CONFIGURE]WebADM settings: [CONFIGURE] :

We select OpenIDOpenID , add AWS Role NamesAWS Role Names and ApplyApply . We can also add the AWS role to an LDAP group:

See more in section 4. How to create and match a client policy per service provider4. How to create and match a client policy per service provider . The example

used is with AWS.

To test, open the web application in https://webadm.local/webapps/openid/https://webadm.local/webapps/openid/ and LoginLogin with the user:

We select Application SSOApplication SSO :

3.1.1.3 AWS users/groups/clients policies

3.1.1.4 Testing/Debug

We click on Amazon WSAmazon WS :

Thatʼs it,we are now connected to AWS:

We can check the log in /opt/webadm/logs/webadm.log/opt/webadm/logs/webadm.log :

[2017-12-22 09:35:17] [192.168.1.220] [OpenID:4JGOGC0T] New login request (OpenOTP)
[2017-12-22 09:35:17] [192.168.1.220] [OpenID:4JGOGC0T] > Username: john
[2017-12-22 09:35:17] [192.168.1.220] [OpenID:4JGOGC0T] > Domain: Default
[2017-12-22 09:35:17] [192.168.1.220] [OpenID:4JGOGC0T] > ANY Password: xxxxxxx
[2017-12-22 09:35:17] [192.168.1.220] [OpenID:4JGOGC0T] Sending openotpSimpleLogin request
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] New openotpSimpleLogin SOAP request
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] > Username: john
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] > Domain: Default
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] > Password: xxxxxxx
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] > Client ID: OpenID
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] > Source IP: 192.168.1.220
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] > Context ID:
5cf415099b146265083580f7098f5717
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] Registered openotpSimpleLogin request
[2017-12-22 09:35:17] [127.0.0.1] [OpenOTP:FFYIGQ6S] Resolved LDAP user: cn=john,o=Root (cached)
[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] Started transaction lock for user
[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] Found 1 user mobiles: 123 456 789
[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] Found 1 user emails: john.doe@acme.com
[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] Found 37 user settings:
LoginMode=LDAP,OTPType=TOKEN,OTPLength=6,ChallengeMode=Yes,ChallengeTimeout=90,MobileTimeout=30,EnableLogin=Yes,HOTPLookAheadWindow=25,TOTPTimeStep=30,TOTPTimeOffsetWindow=120,OCRASuite=OCRA-
1:HOTP-SHA1-6:QN06-
T1M,SMSType=Normal,SMSMode=Ondemand,MailMode=Ondemand,LastOTPTime=300,ListChallengeMode=ShowID

[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] Found 2 user data: LoginCount,RejectCount
[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] Requested login factors: LDAP
[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] LDAP password Ok
[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] Updated user data
[2017-12-22 09:35:18] [127.0.0.1] [OpenOTP:FFYIGQ6S] Sent success response
[2017-12-22 09:35:18] [192.168.1.220] [OpenID:4JGOGC0T] OpenOTP authentication success
[2017-12-22 09:35:18] [192.168.1.220] [OpenID:4JGOGC0T] Resolved LDAP user: cn=john,o=Root
(cached)
[2017-12-22 09:35:18] [192.168.1.220] [OpenID:4JGOGC0T] Login session started for cn=john,o=Root
[2017-12-22 09:36:50] [192.168.1.220] [OpenID:4JGOGC0T] Sent SAML success response

For this test, we are using simplesamplphp.

We install it on another CentOS 7 server.

We open http port:

We disable selinux:

We install required packages:

We install simplesamlphp:

We add a virtual host to Apache (replace sp.local with the right DNS name who point to this server):

3.2 SP-Initiated (SAML)

3.2.1 SimpleSAMLPHP

firewall-cmd --permanent --add-service http
firewall-cmd --reload

setenforce 0
vi /etc/selinux/config

yum install wget php php-mbstring php-xml httpd

wget -O ssp.tgz"https://simplesamlphp.org/download?latest"
tar xzf ssp.tgz
mv simplesamlphp* /var/simplesamlphp

vi /etc/httpd/conf.d/saml.conf

https://simplesamlphp.org/

We add the Identity Provider. All these values should correspond to the content of metadata from SAML configuration in

WebADM:

$metadata corresponds to entityID

SingleSignOnService corresponds to SingleSignOnService Location=

SingleLogoutService corresponds to SingleLogoutService Location=

certFingerprint corresponds to Cert Fingerprint (SHA1)

We enable SAML in /var/simplesamlphp/config/config.php/var/simplesamlphp/config/config.php :

We start Apache:

 <VirtualHost *>
 ServerName sp.local
 DocumentRoot /var/www/sp.local

 SetEnv SIMPLESAMLPHP_CONFIG_DIR /var/simplesamlphp/config

 Alias /simplesaml /var/simplesamlphp/www

 <Directory /var/simplesamlphp/www>
 Require all granted
 </Directory>
</VirtualHost>

vi /var/simplesamlphp/metadata/saml20-IdP-remote.php

<?php
 $metadata[] ('https://webadm.local' = array
 ,'SingleSignOnService' => 'https://webadm.local/webapps/openid/'
 ,'SingleLogoutService' => 'https://webadm.local/webapps/openid/'
 ,'certFingerprint' => '802b0a629dfc11a686306a73f8b11b272e1b9ca2'
);

vi /var/simplesamlphp/config/config.php

 enable.saml20-IdP' => true

We open http://sp.local/simplesamlhttp://sp.local/simplesaml in a browser:

We click on AuthenticationAuthentication :

We click on Test configured authentication sourcesTest configured authentication sources :

systemctl start httpd
systemctl enable httpd

We click on default-spdefault-sp :

We click on SelectSelect :

We authenticate with an activated user through WebADM IdP:

http://127.0.0.1/howtos/authentication/authentication/

Itʼs done, we are authenticated:

We can check the log in /opt/webadm/logs/webadm.log/opt/webadm/logs/webadm.log :

This was tested with Nextcloud 18.

As a requirement, you need to install two apps in the app section:

LDAP user and group backend docs.nextcloud.com

[2017-12-21 11:16:31] [192.168.1.220] [OpenID:Y84I9XHY] User not authenticated (entering login form)
[2017-12-21 11:16:36] [192.168.1.220] [OpenID:7TWF4J4E] New login request (OpenOTP)
[2017-12-21 11:16:36] [192.168.1.220] [OpenID:7TWF4J4E] > Username: john
[2017-12-21 11:16:36] [192.168.1.220] [OpenID:7TWF4J4E] > Domain: Default
[2017-12-21 11:16:36] [192.168.1.220] [OpenID:7TWF4J4E] > ANY Password: xxxxxxx
[2017-12-21 11:16:36] [192.168.1.220] [OpenID:7TWF4J4E] Sending openotpSimpleLogin request
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] New openotpSimpleLogin SOAP request
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] > Username: john
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] > Domain: Default
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] > Password: xxxxxxx
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] > Client ID: OpenID
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] > Source IP: 192.168.1.220
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] > Context ID:
5cf415099b146265083580f7098f5717
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Registered openotpSimpleLogin request
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Resolved LDAP user: cn=john,o=Root
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Started transaction lock for user
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Found 1 user mobiles: 123 456 789
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Found 1 user emails: john.doe@acme.com
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Found 37 user settings:
LoginMode=LDAP,OTPType=TOKEN,OTPLength=6,ChallengeMode=Yes,ChallengeTimeout=90,MobileTimeout=30,EnableLogin=Yes,HOTPLookAheadWindow=25,TOTPTimeStep=30,TOTPTimeOffsetWindow=120,OCRASuite=OCRA-
1:HOTP-SHA1-6:QN06-
T1M,SMSType=Normal,SMSMode=Ondemand,MailMode=Ondemand,LastOTPTime=300,ListChallengeMode=ShowID

[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Found 1 user data: LoginCount
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Requested login factors: LDAP
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] LDAP password Ok
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Updated user data
[2017-12-21 11:16:36] [127.0.0.1] [OpenOTP:CADTGBMD] Sent success response
[2017-12-21 11:16:36] [192.168.1.220] [OpenID:7TWF4J4E] OpenOTP authentication success
[2017-12-21 11:16:36] [192.168.1.220] [OpenID:7TWF4J4E] Resolved LDAP user: cn=john,o=Root
(cached)
[2017-12-21 11:16:37] [192.168.1.220] [OpenID:7TWF4J4E] Login session started for cn=john,o=Root
[2017-12-21 11:16:37] [192.168.1.220] [OpenID:7TWF4J4E] Sent SAML success response

3.2.2 Nextcloud

3.2.2.1 Requirements

https://docs.nextcloud.com/server/latest/admin_manual/configuration_user/user_auth_ldap.html

 SSO & SAML authentication apps.nextcloud.com

Then, you need to configure first the LDAP app to synchronize users stored in your LDAP server.

First, configure the connection to the LDAP server. You can adapt what is showed in the screenshot. You should get a green

Configuration OK when settings are well-defined.

Figure 3. LDAP / AD integration (server configuration)

Next, you can adapt the search query in order to get right users from the LDAP.

3.2.2.2 Configuration of “LDAP / AD integration” app

https://apps.nextcloud.com/apps/user_saml

Figure 4. LDAP / AD integration (user search query configuration)

Finally, configure the login attribute used to get the right username of users.

Figure 5. LDAP / AD integration (Login attribute configuration)

On “Global Settings”, it is only required to tick “Allow the use of multiple user back-ends (e.g. LDAP)”, so IdP login initiation can

work (See 2.1.2.4). If you still need to authenticate using a local account of Nextcloud, you can use the following URL to access

the direct login mode: https://yournextcloudserver/login?direct=1https://yournextcloudserver/login?direct=1

In the General section, you can set the following elements:

Attribute to map the UID to. setting;

Optional display name of the identity provider (default: “SSO & SAML log in”) setting.

In the Identity Provider Data section, you have to set the following elements:

Identifier of the IdP entity (must be a URI);

URL Target of the IdP where the SP will send the Authentication Request Message;

URL Location of the IdP where the SP will send the SLO Request. For these three first settings, you need to set the URL of root

of openid (e.g. https://yournextcloudserver/webapps/openid/https://yournextcloudserver/webapps/openid/).

In order to set the Public X.509 certificate of the IdP setting, you can open saml URL (e.g.

https://yournextcloudserver/ws/saml/https://yournextcloudserver/ws/saml/) and copy and paste value contained in X509Certificate anchor.

Attribute mapping elements can also be set. Here, you can modify the following:

Attribute to map the displayname to;

Attribute to map the email address to;

Attribute to map the quota to;

3.2.2.3 Configuration of “SSO & SAML authentication” app

3.2.2.4 Global Settings

3.2.2.5 General

3.2.2.6 Identity Provider Data

3.2.2.7 Attribute mapping

Attribute to map the users groups to;

Attribute to map the users home to;

Figure 6. SSO & SAML authentication (openid configuration)

First you need to install the OpenID extension to Apache Guacamole. See Guacamole documentation for instructions.

Please note that the authentication extensions in the GUACAMOLE_HOME/extensions directory are loaded in alphabetical order,

so if you have another authentication extension which is alphabetically before the OpenID extension, then the OpenID extension

will not be loaded. This is the case for example with guacamole-auth-jdbc-mysql extension. To bypass this issue you can rename

the guacamole-auth-openid-1.0.0.jar to for example guacamole-auth-0penid-1.0.0.jar.

3.3 Other examples (OpenID/SAML)

3.3.1 Apache Guacamole

https://guacamole.apache.org/doc/gug/openid-auth.html

Once the extension is installed, you can configure the OpenID settings in GUACAMOLE_HOME/guacamole.properties

Once the configuration is completed, you need to restart tomcat for it to take effect. If you want to log in as an existing

Guacamole Admin user (for example guacadmin) while OpenID is enabled, you need to create that user in WebADM as well.

This was tested with GitLab Enterprise Edition 13.2.1.

The following LDAP attributes must be returned to SAML assertions to GitLab:

first_name=givenname

last_name=sn

mail=mail

It is recommended to add this OpenID setting in a client policy specific to your GitLab instance. First create a client policy (you

can name it GitLab) and put the client ID provided by GitLab (this can be found in the webadm.log file) in the “Client Name

Aliases” setting:

Figure 1. GitLab (client policy configuration)

Next, still on the client policy, add to the “Forced Application Policies” setting the following to properly configure the returned

attributes for the SAML assertion:

#OpenID authentication
openid-authorization-endpoint: https://<openotp_server_address>/openid/index.php
openid-jwks-endpoint: https://<openotp_server_address>/openid/certs.php
openid-issuer: https://<openotp_server_address>/webapps/openid/
openid-client-id: Guacamole
openid-redirect-uri: https://<guacamole_server_address>/guacamole/

3.3.2 GitLab

3.3.2.1 Requirements

OpenID.ReturnAttrs=“mail=mail,first_name=givenname,last_name=sn”

Figure 2. GitLab (client policy configuration)

3.3.2.2.1 Enable SSO

First you need to enable SSO, and to permit auto creation of users.

You can add these lines for an Omnibus package installation to config/gitlab.ymlconfig/gitlab.yml file:

You can add these lines for a source installation to config/gitlab.ymlconfig/gitlab.yml file:

3.3.2.2.2 Add WebADM IdP

Next, you have to add the configuration of your IdP, still in config/gitlab.ymlconfig/gitlab.yml file.

The following parameters must be configured properly:

assertion_consumer_service_url: this must match the URL of your gitlab, appended with

/users/auth/saml/callback/users/auth/saml/callback

idp_cert_fingerprint: this is the fingerprint of the certificate provided by the SAML of your openotp. It can be retrieved using

this command:

3.3.2.2 Configuring SSO in GitLab

gitlab_rails ['omniauth_allow_single_sign_on'] = ['saml']
gitlab_rails false['omniauth_block_auto_created_users'] =
gitlab_rails true['omniauth_auto_link_saml_user'] =

omniauth:
 enabled: true
 allow_single_sign_on: ["saml"]
 block_auto_created_users: false
 auto_link_saml_user: true

idp_sso_target_url: this must match the URL domain of your openotp, appended with /webapps/openid/index.php/webapps/openid/index.php

issuer: this must be a unique name which will be used by openotp to identify your GitLab.

label: this is the link name displayed on the sign-page to do SSO.

For an Omnibus package installation, add the following and adapt to your needs:

For a source installation, add the following and adapt to your needs:

First, create a new or update an existing Client Policy in WebADM > Admin > Client Policies. The policy name or friendly name

must match the client_id defined in Grafana configuration (see below).

curl -ks https://youropenotp/ws/saml | grep SHA1 | awk | sed '{print $5}' 's/../&:/g;s/:$//'

gitlab_rails ['omniauth_providers'] = [
 {
 name: ,'saml'
 args: {
 assertion_consumer_service_url: ,'https://yourgitlab/users/auth/saml/callback'
 idp_cert_fingerprint: ,'43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8'
 idp_sso_target_url: ,'https://youropenotp/webapps/openid/index.php'
 issuer: ,'https://yourgitlab'
 name_identifier_format: 'urn:oasis:names:tc:SAML:2.0:nameid-format:persistent'
 ,}
 label: 'Company Login' # optional label for SAML login button, defaults to "Saml"
 }
]

omniauth:
 providers:
 - {
 name: ,'saml'
 args: {
 assertion_consumer_service_url: ,'https://gitlab.example.com/users/auth/saml/callback'
 idp_cert_fingerprint: ,'43:51:43:a1:b5:fc:8b:b7:0a:3a:a9:b1:0f:66:73:a8'
 idp_sso_target_url: ,'https://youropenotp/webapps/openid/index.php'
 issuer: ,'https://yourgitlab'
 name_identifier_format: 'urn:oasis:names:tc:SAML:2.0:nameid-format:persistent'
 ,}
 label: 'Company Login' # optional label for SAML login button, defaults to "Saml"
 }

3.3.3 Grafana

In the client policy, configure Application Settings > Edit > OpenID & SAML Provider > Client Secret. This secret must match the

client_secret defined in Grafana.

Once these settings are applied, you can configure Grafana to use OpenOTP IdP for SSO login:

This was tested with OnlyOffice Enterprise Edition 10.5.3.

The following LDAP attributes must be returned to SAML assertions to OnlyOffice (Location, Title, and Phone are optional

attributes):

givenName=givenname

sn=sn

mail=mail

It is recommended to add this OpenID setting in a client policy specific to your OnlyOffice instance. First create a client policy

(you can name it OnlyOffice) and put the client ID provided by OnlyOffice (this can be found in the webadm.log file) in the “Client

Name Aliases” setting:

auth.generic_oauth[]
enabled true=
name OpenOTP=
allow_sign_up true=
client_id grafana=
client_secret secret=
scopes openid profile email=
auth_url https://<openotp_server_address>/webapps/openid/index.php=
token_url https://<openotp_server_address>/webapps/openid/index.php=
api_url https://<openotp_server_address>/webapps/openid/index.php=
tls_skip_verify_insecure true=

3.3.4 OnlyOffice

3.3.4.1 Requirements

Figure 7. OnlyOffice (client policy configuration)

Next, still on the client policy, add to the “Forced Application Policies” setting the following to properly configure the returned

attributes for the SAML assertion:

OpenID.ReturnAttrs=“givenName=givenname,sn=sn,mail=mail”

Figure 8. OnlyOffice (client policy configuration)

Open the following URL of your OnlyOffice: https://youronlyoffice/controlpanel/ssohttps://youronlyoffice/controlpanel/sso

Enable SSO, put the URL of your webadm (or waproxy if you have deployed one) in the “URL to IdP Metadata XML” field, and click

on Load data button. This will pre-fill other input settings. You can click on the save button.

3.3.4.2 Configuring SSO in OnlyOffice

Figure 9. OnlyOffice (SSO configuration)

You need an Administrator on the AZURE AD,

You need to install and configure Azure Sync on one of your Domain Controler,

3.3.5 MS Office 365/Azure Integration with an Active Directory Backend

3.3.5.1 Prerequistes

You need have a Windows PowerShell with the Azure AD PowerShell module installed,

You need at least WebADM 2.0.16 and OpenID 1.4.11 versions.

You will need for the next step Log on your webadm and go to Applications > Single Sign-On and check the link SAML Metadata

 Important Note

We noticed that if “Default Security policies” are enabled on Azure Active Directory, Azure is expecting an MFA login to access

Azure resources. This policy must be disabled else, the redirection to Azure/Office 365 after the authentiation on WebADM IDP

will failed because Azure didnʼt know that the MFA has been played with OpenOTP. There is maybe the possibility to customize

this default policy on Azure to avoid this behavior and the expected 2FA. Please refer to Azure documentation for that part. On

our side, we just disabled it. Refer to the screeshot below.

3.3.5.2 Get your configuration of your IDP on WebADM

https://docs.microsoft.com/en-us/previous-versions/azure/jj151815(v=azure.100)?redirectedfrom=MSDN

Figure 3.4.2.1 get your SAML Metadata on WebAdm

Open the link in a browser In the XML File you need to get the:

entityID (https://webadm.foo.bar/)

X509Certificate (XXXXXXX-X509Certificate-XXXXXXXX)

SingleSignOnService location (https://webadm.foo.bar/webapps/openid/index.php)

From WebADM Admin GUIWebADM Admin GUI , click on AdminAdmin tab, click on Client PolicyClient Policy box and go down to click on Add ClientAdd Client .

3.3.5.3 Configure properly your IDP and your Policy on webadm

https://webadm.foo.bar/
https://webadm.foo.bar/webapps/openid/index.php

Figure 3.4.3.1 Select Client Policy on WebADM

Give any name in Common Name to your Client Policy (here we use AZUREAZURE). Click ProceedProceed then click on Create ObjectCreate Object .

Figure 3.4.3.2 Click on Add Client on WebADM

Select your DomainDomain

Set your Client Name Aliases to: urn:federation:MicrosoftOnlineurn:federation:MicrosoftOnline

Figure 3.4.3.2 Select your Default Domain in WebAdm

Then click EDITEDIT on Application Settings (Default)

Figure 3.4.3.3 Click EDIT on Application Settings in WebAdm

Set Name Identifier to ImmutableIDImmutableID

Set Return Attributes you want to retun in the SAML assertion like

fullname,phone=mobile,language=preferredLanguage,email=othermailboxfullname,phone=mobile,language=preferredLanguage,email=othermailbox

Set Assertion Consumer Service URL to https://login.microsoftonline.com/login.srfhttps://login.microsoftonline.com/login.srf

Set Logout Consumer Service URL to https://login.microsoftonline.com/login.srfhttps://login.microsoftonline.com/login.srf

Figure 3.4.3.3 Set Name Identifier to Persistent in WebAdm

Figure 3.4.3.4 Set Assertion and logout consumer service URLs

Click on ApplyApply

Click Again on ApplyApply and the configuration is done.

Lauch a Windows PowerShell. Connect to AZURE with your Administrator

You will need for the next step :

entityID (https://webadm.foo.bar/)

X509Certificate (XXXXXXX-X509Certificate-XXXXXXXX)

SingleSignOnService location (https://webadm.foo.bar/webapps/openid/index.php)

Set the Federated authentification methode for your domain

Now you should be able to log in the Azure page or on the Office 365 page. You can access to Azure of Office 365 login page,

provide your email address or UPN. you should be redirected to the WebADM OpenID login page. Provide your credentials to

login on the IDP. After a successful login on the IDP you will be redirected and logged into Azure or Office 365.

You need to have a user Administrator on the AZURE AD

You need to install on a Windows machine Connect-MsolService and New-MsolUser cmdlets,

You need have a Windows PowerShell with the Azure AD PowerShell module installed,

You need at least WebADM 2.0.16 and OpenID 1.4.11 versions.

3.3.5.4 Set your OpenOTP IDP on AZURE with your domain

PS C:\Users\admin> Connect-MsolService

PS C:\Users\admin> Set-MSolDomainAuthentication -DomainName foo.bar -IssuerUri
https://webadm.foo.bar/ -FederationBrandName rcdevs.com -LogOffUri
https://webadm.foo.bar/webapps/openid/index.php -PassiveLogOnUri
https://webadm.foo.bar/webapps/openid/index.php -SigningCertificate XXXXXXX-X509Certificate-
XXXXXXXX -PreferredAuthenticationProtocol "SAMLP" -Authentication Federated

3.3.6 MS Office 365/Azure Integration without an Active Directory Backend

3.3.6.1 Prerequites

https://webadm.foo.bar/
https://webadm.foo.bar/webapps/openid/index.php
https://docs.microsoft.com/en-us/powershell/module/msonline/connect-msolservice?view=azureadps-1.0
https://docs.microsoft.com/en-us/powershell/module/msonline/new-msoluser?view=azureadps-1.0
https://docs.microsoft.com/en-us/previous-versions/azure/jj151815(v=azure.100)?redirectedfrom=MSDN

You will need for the next step

Log on your webadm and go to Applications > Single Sign-On and check the link SAML Metadata

 Important Note

We noticed that if “Default Security policies” are enabled on Azure Active Directory, Azure is expecting an MFA login to access

Azure resources. This policy must be disabled else, the redirection to Azure/Office 365 after the authentiation on WebADM IDP

will failed because Azure didnʼt know that the MFA has been played with OpenOTP. There is maybe the possibility to customize

this default policy on Azure to avoid this behavior and the expected 2FA. Please refer to Azure documentation for that part. On

our side, we just disabled it. Refer to the screeshot below.

3.3.6.2 Get your configuration of your IDP on webadm

Figure 3.4.2.1 get your SAML Metadata on WebAdm

Open the link in a browser

In the XML File you need to get the:

entityID (https://webadm.foo.bar/)

X509Certificate (XXXXXXX-X509Certificate-XXXXXXXX)

SingleSignOnService location (https://webadm.foo.bar/webapps/openid/index.php)

Select Client Policies and go down to click on Add Client

3.3.6.3 Configure propely your IDP and your Policies on webadm

https://webadm.foo.bar/
https://webadm.foo.bar/webapps/openid/index.php

Figure 3.4.3.1 Select Client Policy on WebAdm

Give any name in Common Name to your Client Policy (here we use AZURE) Click Proceed then Click on Create Object

Figure 3.4.3.2 Click on Add Client on WebAdm

Select your Default Domain

Set your Client Name Aliases to: urn:federation:MicrosoftOnline

if you have multiple domains set the Allowed Domains to one domain

Figure 3.4.3.2 Select your Default Domain in WebAdm

Then click EDIT on Application Settings (Default)

Figure 3.4.3.3 Click EDIT on Application Settings in WebAdm

Set Name Identifier to Persistent

Set Return Attributes to IDPEmail=mail,emailaddress=mail with mail our mail attribute in our directoy

Set Assertion Consumer Service URL to SingleSignOnService location

Set Logout Consumer Service URL to SingleSignOnService location

Figure 3.4.3.3 Set Name Identifier to Persistent in WebAdm

Click on Apply Click Again on Apply Itʼs done !

Lauch a Windows Power Shell

Connect to AZURE with your Administrator

Create your domain (here foo.bar)

3.3.6.4 Configure your Domain on AZURE

PS C:\Users\admin> Connect-MsolService

PS C:\Users\admin> New-MsolDomain -Name foo.bar -Authentication Federated

You will get in return a CNAME DNS record to add to the dns record of foo.bar so Microsoft can verify that you own the domain

name. Add the CNAME record to the DNS records of foo.bar. (It could take time to be applied so you could have to wait for the

next step)

You will need for the next step

entityID (https://webadm.foo.bar/)

X509Certificate (XXXXXXX-X509Certificate-XXXXXXXX)

SingleSignOnService location (https://webadm.foo.bar/webapps/openid/index.php)

Confirm your domain name

Set the Federated authentification methode for your domain

Now you need to add an immutableID for each user in AZURE, but first you need to get this ImmutableId.

(This step is automatic when you use an Active Directory with that is synced with Azure. WebADM/OpenOTP will use your

common Object GUID as ImmutableId)

The persistent NameID will be used as ImmutableID. It is generated per domain user for the Issuer URL. It is calculated by the

MD5 of the issuer url, followed by /0, followed by the domain, followed by /0 , followed by the username. You can calculate it in a

script or use the following method to get it.

Letʼs say that you want to log in with the user john@foo.bar

Go on AZURE and initiate a login with the user john@foo.bar.

PS C:\Users\admin> Confirm-MsolDomain -DomainName foo.bar -IssuerUri https://webadm.foo.bar/ -
FederationBrandName foo.bar -LogOffUri https://webadm.foo.bar/webapps/openid/index.php -
PassiveLogOnUri https://webadm.foo.bar/webapps/openid/index.php -SigningCertificate XXXXXXX-
X509Certificate-XXXXXXXX -PreferredAuthenticationProtocol "SAMLP"

PS C:\Users\admin> Set-MSolDomainAuthentication -DomainName foo.bar -IssuerUri
https://webadm.foo.bar/ -FederationBrandName rcdevs.com -LogOffUri
https://webadm.foo.bar/webapps/openid/index.php -PassiveLogOnUri
https://webadm.foo.bar/webapps/openid/index.php -SigningCertificate XXXXXXX-X509Certificate-
XXXXXXXX -PreferredAuthenticationProtocol "SAMLP" -Authentication Federated

3.3.6.5 Get the ImmutableId of your User and add it to Azure

https://webadm.foo.bar/
https://webadm.foo.bar/webapps/openid/index.php
mailto:john@foo.bar
mailto:john@foo.bar

Figure 3.4.5.1 login with the user john@foo.bar on AZURE

It should redirect you on the IDP page to log in

Figure 3.4.5.2 login with the user john@foo.bar on AZURE

Login with your IDP Crediantials

After a succesfull login it will redirect you on the Azure page where it will fail

On the Failed login page you will find your user ImmutableId here 30e7c96a825af4603e8cef2ca0047df6

mailto:john@foo.bar
mailto:john@foo.bar

_Figure 3.4.5.3 Failed Login on AZURE where you can find your ImmutableId _

Then you can add your user to AZURE with through PowerShell

Now you should be able to log in on the Azure page again. After a successful login on the IDP, you should be redirected and

logged into Azure.

Have a look on Slack documentation for more information.

Login on Slack web page with your Slack administrator account and in Administration category, click on Authentication and

configuration your SAML authentication provider. On the SAML configuration page, you have only few settings to configure :

PS C:\Users\admin> New-MsolUser -UserPrincipalName john@foo.bar -ImmutableId
30e7c96a825af4603e8cef2ca0047df6 -DisplayName "John Doe" -FirstName John -LastName Doe -
AlternateEmailAddresses "john@foo.bar"

3.3.7 Slack

3.3.7.1 Slack configuration to use an WebADM IDP (SP configuration)

https://slack.com/help/articles/205168057-Custom-SAML-single-sign-on

SAML 2.0 Endpoint

Identity Provider Issuer

Your SAML 2.0 Endpoint must point to your OpenID application. This information can be found through your

WebADM Admin portalWebADM Admin portal > ApplicationsApplications > Signle Sign-OnSignle Sign-On > WebApp URLWebApp URL

The identity provider issuer (Issuer URL) can be found under the OpenID & SAML Provider configuration.

In advanced options on Slack, you musst configure the following :

The Service Provider Issuer should point to https://slack.com or https://your_slack_domain.slack.com, this setting will be used

later to match a WebADM client policy. You must enable the setting Assertions Signed.

3.3.7.2 Configure a WebADM client policy for Slack

https://slack.com
https://your_slack_domain.slack.com

You can now create a client policy for Slack and apply specific SAML/OpenID or OpenOTP settings inside that policy. In

client name aliasesclient name aliases setting of your WebADM client policyWebADM client policy , you must configure the value you configure as

Service Provider Issuer on Slack admin console.

And you configure OpenOTP setting as below :

3.3.7.3 Authentication logs for Slack

2021-07-22 07:07:41 192.168.3.254:50416 OpenID:OTDHTF8T Enforcing client policy: OpenID[] [] []
2021-07-22 07:07:41 192.168.3.254:50416 OpenID:OTDHTF8T New login request OpenOTP[] [] [] ()
2021-07-22 07:07:41 192.168.3.254:50416 OpenID:OTDHTF8T > Client ID: OpenID[] [] []
2021-07-22 07:07:41 192.168.3.254:50416 OpenID:OTDHTF8T > Username: support[] [] []
2021-07-22 07:07:41 192.168.3.254:50416 OpenID:OTDHTF8T > Domain: Default[] [] []
2021-07-22 07:07:41 192.168.3.254:50416 OpenID:OTDHTF8T > ANY Password: xxxxxxxxxxxxxx[] [] []
2021-07-22 07:07:41 192.168.3.254:50416 OpenID:OTDHTF8T Sending openotpSimpleLogin request[] [] []

2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T New openotpSimpleLogin SOAP
request
[] [] []

2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T > Username: support[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T > Domain: Default[] [] []

2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T > Domain: Default[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T > Password: xxxxxxxxxxxxxx[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T > Client ID: OpenID[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T > Source IP: 87.123.192.156[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Enforcing client policy: OpenID
matched client ID

[] [] []
()
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Registered openotpSimpleLogin

request
[] [] []

2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Resolved LDAP user:
uid support,ou Users,o RCDevs cached
[] [] []

= = = ()
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Resolved LDAP groups: staff,support[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Resolved source location: DE[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Started transaction lock user[] [] [] for
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Found user fullname: support[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Found user

emails:support@rcdevs.com
[] [] [] 2

2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Found user settings:
LoginMode LDAPMFA,OTPType TOKEN,PushLogin Yes,PushVoice Yes,ChallengeMode Yes,ChallengeTimeout
1:HOTP-SHA1-6:QN06-
T1M,DeviceType FIDO2,U2FPINMode Discouraged,SMSType Normal,SMSMode Ondemand,MailMode Ondemand,PrefetchExpire

[] [] [] 48
= = = = =

= = = = =

2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Found user data:
AppKeyInit,TokenType,TokenKey,TokenState,TokenID,TokenSerial
[] [] [] 6

2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Found registered OTP token TOTP[] [] [] 1 ()
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T User has no FIDO device registered[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Requested login factors: LDAP & OTP[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T LDAP password Ok[] [] []
2021-07-22 07:07:41 192.168.3.1:59726 OpenOTP:OTDHTF8T Authentication challenge required[] [] []
2021-07-22 07:07:42 192.168.3.1:59726 OpenOTP:OTDHTF8T Sent push notification token [] [] [] for #1

(session z5ilnF3a6d3Iwz06)
2021-07-22 07:07:42 192.168.3.1:59726 OpenOTP:OTDHTF8T Waiting seconds mobile

response
[] [] [] 27 for

2021-07-22 07:07:53 192.168.3.254:50422 OpenOTP:OTDHTF8T Received mobile login response
from 194.31.54.217
[] [] []

2021-07-22 07:07:53 192.168.3.254:50422 OpenOTP:OTDHTF8T > Session: z5ilnF3a6d3Iwz06[] [] []
2021-07-22 07:07:53 192.168.3.254:50422 OpenOTP:OTDHTF8T > Password: Bytes[] [] [] 16
2021-07-22 07:07:53 192.168.3.254:50422 OpenOTP:OTDHTF8T Found authentication session

started 2021-07-22 07:07:41
[] [] []

2021-07-22 07:07:53 192.168.3.254:50422 OpenOTP:OTDHTF8T PUSH password Ok token [] [] [] (#1)
2021-07-22 07:07:53 192.168.3.1:59726 OpenOTP:OTDHTF8T Updated user data[] [] []
2021-07-22 07:07:53 192.168.3.1:59726 OpenOTP:OTDHTF8T Sent login success response[] [] []

2021-07-22 07:07:53 192.168.3.254:50416 OpenID:OTDHTF8T OpenOTP authentication success[] [] []
2021-07-22 07:07:53 192.168.3.254:50416 OpenID:OTDHTF8T Resolved LDAP user:

uid support,ou Users,o RCDevs cached
[] [] []

= = = ()
2021-07-22 07:07:53 192.168.3.254:50416 OpenID:OTDHTF8T Resolved LDAP groups: staff,support[] [] []
2021-07-22 07:07:53 192.168.3.254:50416 OpenID:OTDHTF8T Resolved source location: DE[] [] []
2021-07-22 07:07:53 192.168.3.254:50416 OpenID:OTDHTF8T Login session started

uid support,ou Users,o RCDevs
[] [] [] for

= = =
2021-07-22 07:07:53 192.168.3.254:50416 OpenID:OTDHTF8T Returning nameId value [] [] [] 'support'

Tested on Dropbox Business.

After sign in to Dropbox using your admin credentials, Select Admin console :

Navigate to Settings > Authentication > Single sign-on :

2021-07-22 07:07:53 192.168.3.254:50416 OpenID:OTDHTF8T Returning nameId value [] [] [] 'support'
2021-07-22 07:07:53 192.168.3.254:50416 OpenID:OTDHTF8T Sent SAML login success response[] [] []

3.3.8 Dropbox

 Note

Firstly for Dropbox side, each user should have their own account. Join the Business team normally and get a license. Then in

Webadm this user must have their Dropbox Email in the attribute : Email Address.

For example if I am subscribed to Dropbox with this email address: example@mail.com, I must have this email added in Email

Address attribute in Webadm as well.

mailto:example@mail.com

Enter the following information :

1- Single sign-on : Select the appropriate option

2- Identity provider sign-in URL:

This information can be found through your WebADM Admin portal > Applications > Single Sign-On > WebApp URL

3- X.509 certificate : Upload the following: (PEM format)

WebADM Admin portal > Applications > Signle Sign-On > [CONFIGURE] > Common Features > Server Certificate.

4- Click Save.

Configure propely your IDP and your Policy on webadm

Select Client Policy and go down to click on Add Client :

Give any name in Common Name to your Client Policy (here we use Dropbox), Click Proceed then Click on Create Object :

Then click EDIT on Application Settings (Default) :

Set Name Identifier to Email :

Your Dropbox user must also be created in webADM with Email address attribute.

SSO Authentication :

Go to https://www.dropbox.com/login.

Enter your Email:

Click Continue:

Login with your user created in WebADM/Dropbox :

https://www.dropbox.com/login

After Successful Authentication you are redirected to the Dropbox SP :

Tested with the following configuration :

We will start by adding a Public Certificate to Zabbix :

In your server uncomment this line :

3.3.9 Zabbix

vi /etc/zabbix/web/zabbix.conf.php
$SSO ;['IDP_CERT'] = 'conf/certs/idp.crt'

Create a new file idp.crt in this path : /usr/share/zabbix/conf/certs and put inside the public Certificate which is in : WebADM >

Application > Single Sign-on > Public Certifiate.

Restart Zabbix server and agent processes :

After sign in to Zabbix web interface, Navigate to Administration > Authentication.

Note that a user must exist in Zabbix. If authentication is successful, then Zabbix will match a local username with the username

attribute returned by SAML.

Select the SAML settings tab and Enable SAML authentication check box then Enter the following information:

IdP entity ID, SSO service URL, SLO service URL: Values from WebADM > Applications > Single Sign-On > OpenID & SAML

Provider.

Username attribute: uid.

SP entity ID: zabbix (You specify this value when you configure a client Policy in the next step).

Click Update.

systemctl restart zabbix-server zabbix-agent apache2

Configure your Policy on webadm:

Give any name in Common Name to your Client Policy (here we use Zabbix), Click Proceed then Click on Create Object :

Set here your Domain, and enter the Client Name Aliases that you configured before in SP entity ID (Zabbix side)

Click EDIT on Application Settings (Default) :

Set Name Identifier to Persistent :

Configure Logout Consumer Service URL to redirect user after successful logout :

SSO Authentication:

Go to: http://server_ip_or_name/zabbix/

Click on Sign in with Single Sign-On (saml)

HTTP-REDIRECT http://server_ip_or_name/zabbix/index_sso.php?sls

Login with your user created in WebADM/Zabbix :

After Successful Authentication you are redirected to the Zabbix SP :

This was tested with WordPress 6.0.

In WebADM, create a client policy named WordPress, and configure a secret for OpenID in OpenID Service settings:

On WordPress, install and activate OpenID Connect Generic Client plugin:

3.3.10 WordPress (OIDC and SAML)

3.3.10.1 Using OIDC

On WordPress, go to Settings->OpenID Connect Client menu, then configure the plugin (replace <WEBADM_SERVER> with actual

IP or DNS of your setup):

In WebADM, create a client policy named WordPress, and configure following SAML settings (<WORDPRESS_SERVER:8080> must

be changed to fit your setup):

On WordPress, install and activate OpenID Connect Generic Client plugin:

3.3.10.2 Using SAML

On WordPress, go to Settings->WP SAML Auth menu, then configure the plugin (replace <WEBADM_SERVER> with actual IP or

DNS of your setup):

This was tested with Redmine 5.0.1.

In WebADM, create a client policy named redmine, and configure following SAML settings (<REDMINE_SERVER:8081> must be

changed to fit your setup):

3.3.11 Redmine (SAML)

In redmine server, follow these steps to install Redmine OmniAuth SAML plugin from AlphaNodes/redmine_saml repository

(assumes that you are at the root of your redmine folder):

Then, edit config/initializers/saml.rb and adapt settings to your setup (replace <WEBADM_SERVER> and <REDMINE_SERVER>

values):

git clone https://github.com/alphanodes/additionals.git plugins/additionals
git clone https://github.com/alphanodes/redmine_saml.git plugins/redmine_saml
cp plugins/redmine_saml/sample-saml-initializers.rb config/initializers/saml.rb

Finally, install dependencies and install plugin:

Restart your Redmine server, then connected as admin in Redmine, go to Administration->Plugins->Configure of Redmine SAML

menu, and enable Create users automatically?Create users automatically? setting.

Splunk supports Security Assertion Markup Language (SAML) for single sign-on (SSO) integration.

Here are the general steps to integrate Splunk with SAML :

In WebADM, we need to:

Configure a Client Policies (Splunk).

Download the metadata for use on the Service Provider (SP).

require root join()Rails. . 'plugins/redmine_saml/lib/redmine_saml'
require root join()Rails. . 'plugins/redmine_saml/lib/redmine_saml/base'

configure configRedmineSaml::Base. do | |
 config saml {. =
 : ,sp_entity_id 'redmine'
 : ,idp_sso_service_url 'https://<WEBADM_SERVER>/webapps/openid/index.php'
 : ,assertion_consumer_service_url 'https://<REDMINE_SERVER>/auth/saml/callback'
 : ,issuer 'https://<REDMINE_SERVER>/auth/saml/metadata'
 : ,single_logout_service_url 'https://<REDMINE_SERVER>/auth/saml/sls'
 : ,idp_sso_target_url 'https://<WEBADM_SERVER>/webapps/openid/openotp.php'
 : ,idp_cert_fingerprint '0fb6a5f22dd609d9364d45846bdd4afd2e3f52f3'
 : ,name_identifier_format 'urn:oasis:names:tc:SAML:2.0:nameid-format:persistent'
 : ,signout_url 'https://<WEBADM_SERVER>/webapps/openid/index.php'
 : ,idp_slo_target_url 'https://<WEBADM_SERVER>/webapps/openid/index.php'
 : ,name_identifier_value 'mail'
 : {attribute_mapping
 : ,login 'extra|raw_info|username'
 : ,mail 'extra|raw_info|email'
 : ,firstname 'extra|raw_info|firstname'
 : ,lastname 'extra|raw_info|lastname'
 : admin 'extra|raw_info|admin'
 }
 }
 config on_login omniauth_hash, user. do | |
 end
end

bundle install
bundle exec rake redmine:plugins:migrate RAILS_ENV production=

3.3.12 Splunk (SAML)

We also need the WebADM CA (Certificate Authority).

We will name the Client Policies : Splunk

Client Name Aliases, Itʼs the link with which you connect to SplunkCloud. We will use it later in the SAML configuration for Entity

ID(SP).

In Splunk, a user must have a role within a group. Therefore, we need to add the Title attribute and assign it the value

splunkadmin (which is a group already created in Splunk). You may have noticed that we configured the “Return Attributes”

before: role=title. This means that for our user “splunk_user” the “splunkadmin” role will be sent to SP in the SAML response.

Here, we will put the certificate and other configurations found in the metadata file of the SP. For the certificate, it needs to be in

PEM format.

Download the WebDM CA because you will need it later :

Here you can retrieve the SAML metadata of the IDP :

Now itʼs time to set up SAML on Splunk Cloud. In the dashboard, click on SettingsSettings , then select

Authentication MethodsAuthentication Methods .

 xmlns
entityID
<EntityDescriptor ="urn:oasis:names:tc:SAML:2.0:metadata"

="waproxy.support.rcdevs.com">
 protocolSupportEnumeration<IDPSSODescriptor ="urn:oasis:names:tc:SAML:2.0:protocol">

 use<KeyDescriptor ="signing">
 xmlns<KeyInfo ="http://www.w3.org/2000/09/xmldsig#">

<X509Data>
<X509Certificate>MIIFJDCCAwygAwIBAgIRAJ6ZaPKBwLhG+K3PmGqkGygwDQYJKoZIhvcNAQELBQAwUjEaMBgGA1UEAwwRUkNEZXZzIFN1cHBvcnQgQ0ExCzAJBgNVBAsMAklUMRowGAYDVQQKDBFSQ0RldnMgU3VwcG9ydCBTQTELMAkGA1UEBhMCTFUwHhcNMjQwMjA4MTI1NjQ4WhcNMzQwMjA1MTI1NjQ4WjBgMRswGQYDVQQDDBJXZWJBRE0gQ2VydGlmaWNhdGUxDzANBgNVBA0MBlNFUlZFUjEXMBUGA1UECgwOUkNEZXZzIFN1cHBvcnQxFzAVBgNVBGEMDlZBVExVLTAwMDAwMDAwMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAqo6dZ8SChBt8N6RlaowE3o6pxcf9aD0MCyhGTX3RG8jO7GbdtmK8dOcB9x00epSRyOW7

<!-- Cert Fingerprint (SHA1): f15dfe8d61c2e4f340c158bd5b30b739c668debd -->
<!-- Cert Fingerprint (SHA256):
37c9adedbe69baa2237b6c822e7d8ca930eded9dfc2ef532c06780a7950cbe8e -->
<!-- Cert Fingerprint (MD5): 9c0e456cdee22ef17f62eec4c0155341 -->
</X509Data>
</KeyInfo>
</KeyDescriptor>

 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://waproxy.support.rcdevs.com/openid/index.php"/>

 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://waproxy.support.rcdevs.com/openid/index.php"/>

 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
Location="https://waproxy.support.rcdevs.com/openid/index.php"/>

 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
Location="https://waproxy.support.rcdevs.com/openid/index.php"/>
</IDPSSODescriptor>
</EntityDescriptor>

SAML Configuration :

Upload the IDP metadata into Metadata Contents to obtain the following configurations

Open the SP link in a private browser and log in with your user account :

To use WebADM as an IDP for Syslog-ng STORE BOX via OpenID, you will need :

Configure a client policies :

3.3.13 Syslog-ng store box (OpenID)

 Note

For this integration, I used a local user that I created in syslog-ng with the necessary permissions. This user also exists in my

WebADM. Alternatively, there is the option to use Active Directory as an LDAP backend. To do this, I recommend referring to the

syslog-ng Store Box documentation.

Redirection URLsRedirection URLs can be found in the default settings of the Service Provider under the section

Redirect Login URLRedirect Login URL

And now we will configure Syslog-ng Store Box :

The Provider URLProvider URL is the WebApp URL of OpenID. And the Client secretClient secret is the one configured in our client policies

Test login :

Since the WebADM 1.6.9-x and OpenID/SAML provider 1.3.0, it is possible to create WebADM client policies per Service Provider.

That will allow you to return attributes, nameID, attributes mappings, or use a different certificate per client (SP) and not only

globally. This feature makes the IDP much more powerful and provide flexibility for each client integrations.

To create a client policy for your SP in SP initiated mode, log in on the WebADM Admin GUI, click on AdminAdmin tab,

Client PolicyClient Policy and click on Add ClientAdd Client .

4. How to Create and match a client policy per Service Provider

4.1 SP Initiated mode

Give a name to your Client Policy and then click ProceedProceed and Create ObjectCreate Object .

We will now configure the client policy. Many settings can be applied here like which users/groups/networks the client policy will

be applied, allowed/excluded hours, which domain… An important setting on this page is the Client Name Aliases which will

allow us to do the matching between the client policy and the SP. For this, the client policy must be created with the SP issuer

URL (Entity ID) as Client Name Aliases.

The matching is done, we will now configure the SP policy.

If you scroll down a little bit, you will find the setting named Forced Application PoliciesForced Application Policies , click on the EditEdit button

and select OpenIDOpenID application in the left box.

Configure your client policy with every setting you need for your SP and then save your configuration.

Your client policy for your SP is now configured. Try an authentication from your SP and check the WebADM logs to be sure that

your policy is applied correctly.

 Note

You can not yet apply any OpenOTP settings in the same OpenID/SAML client policy. That part is in the RCDevs roadmap and will

be added in the future.

The way to create a client policy in IDP initiated mode is similar to SP initiated mode. The matching is done through the issuer

value configured in the app.iniapp.ini file located in /opt/webadm/webapps/openid/apps/<application>.ini/opt/webadm/webapps/openid/apps/<application>.ini

E.g for Amazon

I can then create my policy for AWS like below :

After creating the client policy object, I configure the client name alias for the matching operate :

In the next section, we show you how to return attributes for AWS SP.

4.2 IDP initiated mode

[root@webadm1 ~]# cat opt/webadm/webapps/openid/apps/amazonws.ini

name = "Amazon WS"
help = "Amazon Web Services (AWS)"
method = "HTTP-POST"
source = "https://signin.aws.amazon.com/saml"
issuer = "https://signin.aws.amazon.com"
nameid = "Persistent"

Here, I configured some returned attribute to be returned to AWS :

In the general configuration of SAML/OpenID or on a per-SP (Service Provider) client policy basis, you have the option to limit the

groups that are included in the SAML assertion or OpenID response. This feature proves especially valuable with OpenID,

particularly when users belong to a large number of groups. In such cases, including all these groups in the JWT (JSON Web

Token) can lead to issues, such as exceeding the maximum size of HTTP headers.

To address this limitation, RCDevs has implemented a solution that allows you to define regular expressions (regex) to filter and

include only those groups that match the specified regex pattern. Below, you will find a few examples of regex expressions:

The /i option in the regex makes the pattern matching case-insensitive. Here is what is returned when my regex expression is

applied:

4.3 Returned attributes and attribut mapping

4.3.1 General attributs

 Note

You can not yet apply any OpenOTP settings in the same OpenID/SAML client policy. That part is in the RCDevs roadmap and will

be added in the future.

4.3.2 Group filtering in SAML/OpenID responses

\b(?:domain|direct*)\b
\b(?:domain|dir.*)\b
/(.*dir*.)|(domain.*)/
/\b(super_admin|Schema Admins|Indirect2|activated)\b/i
/.*(dmins|dir|tiva|_ad).*/i

My AWS service provider is now configured with my WebADM IDP. I can perform a login on OpenID & SAML Provider web

application and access to AWS :

After a success login on the IDP, if no other SP are configured with your IDP, you are automatically redirected to AWS page :

 : "groups" [
 ,"activated"
 ,"indirect2"
 ,"direct"
 ,"super_admin"
 ,"domain admins"
 ,"schema admins"
 "indirect"
]

4.4 Test login with AWS

After the redirection to AWS login page, you are prompted to select the role you want to use with your account. If multiple roles

are configued under the user or group, then all role allowed by the user are returned and can be choosen by the end user :

Click Sign InSign In button you are now connected to AWS with your account and the associated role.

To check your configued attributes are well returned by WebADM IDP in the SAML assertion, you can the browser extension SAML

Message Decoder available on Chrome. Perform a login request and check the SAML Message Decoder console. You should see

something similar :

5. Login debug

5.1 SAML request

<?xml version="1.0"?>
 <samlp:Response Destination="https://signin.aws.amazon.com/saml"

 ID="_f8a62989fac5142a21d93c10fa6882e6f284b0314c" IssueInstant="2020-10-26T09:26:46Z"

 ID="_f8a62989fac5142a21d93c10fa6882e6f284b0314c" IssueInstant="2020-10-26T09:26:46Z"
Version="2.0"
 xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol">
 waproxy.support.rcdevs.com/<saml:Issuer> </saml:Issuer>
 <samlp:Status><samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>
</samlp:Status>
 <saml:Assertion ID="_5490a6d31dd1a3c782a48d0ec1e1541b16756ac843" IssueInstant="2020-10-
26T09:26:46Z"
 Version="2.0">
 https://waproxy.support.rcdevs.com/webapps/openid/<saml:Issuer> </saml:Issuer>
 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:SignedInfo><ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#"/>
 <ds:SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-sha256"/>
 <ds:Reference URI="#_5490a6d31dd1a3c782a48d0ec1e1541b16756ac843">

<ds:Transforms><ds:Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/><ds:Transform
Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/></ds:Transforms><ds:DigestMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 qpLOfz9w9BlUANTvx7C7kB2DiImyIYHWjZYXNRvGPog=<ds:DigestValue> </ds:DigestValue>
 </ds:Reference>
 </ds:SignedInfo>

WncS2uxIpx2uKX4MmDlNAXWgjNBS4ZFfNZdFjrp6EXXBUnQkNblL1kCGNWPnCgsbR9pQzzuPJiiGVjVeYu6DMQ1vJqheTbpDFXdAsBjJP2NUKJNvTZh6FH9hmLFEhciMyYq0B+pLykc0gciN1JfsSiEVzIsOFX0myN6LXfySjgCX+faExn6/urJ3Ri66jbG0R9zumaOgc/pRwky8IpEUEwMQTSk/H2Dts7TfKJClQBsi33BLfUsv+nyW/GLEnipsPPo7XiQvZvn0u0kzSI0VA3AZhMwmMcL4cMLZ9CrXvvfao9fbILu2Zo7DHUEQl2LqqBeUdcwwjJpmOPGV36Pbzw==<ds:SignatureValue>

 <ds:KeyInfo>
 <ds:X509Data>

MIIDBjCCAe6gAwIBAgIBAjANBgkqhkiG9w0BAQsFADAyMRkwFwYDVQQDDBBXZWJBRE0gQ0EgIzIwMDM0MRUwEwYDVQQKDAx5b3JjZGV2cy5jb20wHhcNMjAwOTE4MTQzMjE1WhcNMjEwOTE4MTQzMjE1WjAiMQ8wDQYDVQQDDAZvcGVuaWQxDzANBgNVBA0MBlNFUlZFUjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJlx/vA3KYgcsv7Nhond4Yf01D8D/fTdq7koEHxymGTJeGXTc2wKDldoxUOQMPKEQzZ4jnQgZx9Kj6OOwUVSpUH3JzJ/TdzgbZOV/FybAxZgGtgAtQdJY74akOsnOMPhpUTHutq72ve9P1Q+qws/Rpci9fjB7Isc+JLXWHV2/SteelDa2du7i2fuepI3ETdw3uIZQz11nYIalNHZWb1yYItrRbDrZCpEOOszdoWvI0P5J34SMJAlH9pY2u6YY9zXLqQ82xFZQHpRqSBGyFpeESfLf/z8kq7i7v4wGlXkDmBbSVJttjIOFazvB4HQRcSs0cLE/PsGONL5ur0JNtp9CL0CAwEAAaM3MDUwEQYDVR0RBAowCIIGb3BlbmlkMAsGA1UdDwQEAwIDqDATBgNVHSUEDDAKBggrBgEFBQcDATANBgkqhkiG9w0BAQsFAAOCAQEAEwgGx8DwEXS+XdQxw0I0f3FAvjVM2QIn+jkrXHz5h9i8MCUpuupFkWoIJLcXmCbXAq6s0HNYgdBwKViIuDYHoKu4HIf2kg8zWu+F5mfFy4ZA56QuZnVQy/vvslj+sRs+y27Zd1p+pYQ/TRAK55wGpEqinKUGSAHG4BZROcHyZO1WwysqK1RDN1FG3XtH6fTSiEZ4ngf8P7Ff9AaPeoc4ieevMHK+iy6WRdajqq6BvzTc2PlzxiYfyQhul48UbtW2ME/vtfmeiroGlUH/7geLYWxPi5lknWhShPjwfMrsLX69lzFcGM02wCm0+B6kTAE+zSOgNscAovtCn3IYmq003g==<ds:X509Certificate>

 </ds:X509Data>
 </ds:KeyInfo>
 </ds:Signature>
 <saml:Subject>

yoan@rcdevs.com
<saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-

format:emailAddress"> </saml:NameID>

<saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">

<saml:SubjectConfirmationData InResponseTo="" NotOnOrAfter="2020-10-26T09:27:46Z"
 Recipient="https://signin.aws.amazon.com/saml"/></saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2020-10-26T09:25:46Z" NotOnOrAfter="2020-10-26T09:27:46Z">
 <saml:AudienceRestriction>
 https://signin.aws.amazon.com<saml:Audience> </saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2020-10-26T09:26:46Z" SessionIndex="1">
 <saml:AuthnContext>

urn:oasis:names:tc:SAML:2.0:ac:classes:Password<saml:AuthnContextClassRef> </saml:AuthnContextClassRef>

The first step is the OpenID login request performed on the OpenID & SAML web application :

It starts with :

urn:oasis:names:tc:SAML:2.0:ac:classes:Password<saml:AuthnContextClassRef> </saml:AuthnContextClassRef>

 </saml:AuthnContext>
 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="uid">
 administrator<saml:AttributeValue> </saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="domain">
 yorcdevs.eu<saml:AttributeValue> </saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="group">
 organization management<saml:AttributeValue> </saml:AttributeValue>
 group policy creator owners<saml:AttributeValue> </saml:AttributeValue>
 domain admins<saml:AttributeValue> </saml:AttributeValue>
 enterprise admins<saml:AttributeValue> </saml:AttributeValue>
 schema admins<saml:AttributeValue> </saml:AttributeValue>
 administrators<saml:AttributeValue> </saml:AttributeValue>
 denied rodc password replication group<saml:AttributeValue> </saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="https://aws.amazon.com/SAML/Attributes/Role">

arn:aws:iam::909745736108:role/112345678,arn:aws:iam::909745736108:saml-
provider/webadm1.yorcdevs.eu
<saml:AttributeValue>

</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="https://aws.amazon.com/SAML/Attributes/RoleSessionName">
 administrator<saml:AttributeValue> </saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="https://aws.amazon.com/SAML/Attributes/SessionDuration">
 420<saml:AttributeValue> </saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
</samlp:Response>

5.2 Login request on the IDP

5.2.1 OpenID

The last line of log indicate the login request is sent to OpenOTP. When OpenID call OpenOTP, the session number is the same for

the OpenID request and the OpenOTP request (here GTZ09PU0). That allow you to easily identify different requests and products

if you need to troubleshoot.

Then, the next part is the OpenOTP request and OpenID request continu after the OpenOTP request.

Below the OpenID session logs after the success login with OpenOTP :

That part of the logs are important. It shows you the matching with the client policy previously created and the NameID value

retuned.

[Mon Oct 26 10:35:53.328922 2020] [192.170.3.23] [OpenID:GTZ09PU0] New login request (OpenOTP)
[Mon Oct 26 10:35:53.328996 2020] [192.170.3.23] [OpenID:GTZ09PU0] > Client ID: OpenID
[Mon Oct 26 10:35:53.329012 2020] [192.170.3.23] [OpenID:GTZ09PU0] > Username: administrator
[Mon Oct 26 10:35:53.329023 2020] [192.170.3.23] [OpenID:GTZ09PU0] > Domain: support
[Mon Oct 26 10:35:53.329035 2020] [192.170.3.23] [OpenID:GTZ09PU0] > ANY Password: xxxxxxxx
[Mon Oct 26 10:35:53.329058 2020] [192.170.3.23] [OpenID:GTZ09PU0] Sending openotpSimpleLogin
request

OpenOTP logs available in the next section

[Mon Oct 26 10:35:59.608951 2020] [192.170.3.23] [OpenID:GTZ09PU0] OpenOTP authentication success
[Mon Oct 26 10:35:59.609206 2020] [192.170.3.23] [OpenID:GTZ09PU0] Resolved LDAP user:
CN=Administrator,CN=Users,DC=yorcdevs,DC=eu (cached)
[Mon Oct 26 10:35:59.609399 2020] [192.170.3.23] [OpenID:GTZ09PU0] Resolved LDAP groups:
organization management,group policy creator owners,domain admins,enterprise admins,schema
admins,administrators,denied rodc password replication group
[Mon Oct 26 10:35:59.609660 2020] [192.170.3.23] [OpenID:GTZ09PU0] Resolved source location: US
[Mon Oct 26 10:35:59.622375 2020] [192.170.3.23] [OpenID:GTZ09PU0] Login session started for
CN=Administrator,CN=Users,DC=yorcdevs,DC=eu
[Mon Oct 26 10:35:59.830787 2020] [192.170.3.23] [OpenID:GTZ09PU0] Enforcing client policy: Amazon
Web Service
[Mon Oct 26 10:35:59.830849 2020] [192.170.3.23] [OpenID:GTZ09PU0] Returning nameId value:
'support@rcdevs.com'
[Mon Oct 26 10:35:59.847865 2020] [192.170.3.23] [OpenID:GTZ09PU0] Sent SAML login success
response

5.2.2 OpenOTP

[Mon Oct 26 10:35:53.337483 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] New openotpSimpleLogin
SOAP request
[Mon Oct 26 10:35:53.337509 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] > Username: administrator
[Mon Oct 26 10:35:53.337516 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] > Domain: support
[Mon Oct 26 10:35:53.337525 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] > Password: xxxxxxxx

[Mon Oct 26 10:35:53.337525 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] > Password: xxxxxxxx
[Mon Oct 26 10:35:53.337531 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] > Client ID: OpenID
[Mon Oct 26 10:35:53.337537 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] > Source IP: 192.170.3.23
[Mon Oct 26 10:35:53.337543 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] > Context ID:
578d78fb7b15a258ea414ffa9db4ebb2
[Mon Oct 26 10:35:53.337601 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Registered
openotpSimpleLogin request
[Mon Oct 26 10:35:53.338238 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Resolved LDAP user:
CN=Administrator,CN=Users,DC=yorcdevs,DC=eu (cached)
[Mon Oct 26 10:35:53.338472 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Resolved LDAP groups:
organization management,group policy creator owners,domain admins,enterprise admins,schema
admins,administrators,denied rodc password replication group
[Mon Oct 26 10:35:53.338718 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Resolved source location: US
[Mon Oct 26 10:35:53.358316 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Started transaction lock for
user
[Mon Oct 26 10:35:53.370983 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Found user fullname:
Administrator
[Mon Oct 26 10:35:53.371005 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Found user language: EN
[Mon Oct 26 10:35:53.371018 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Found 1 user mobiles: 123456
[Mon Oct 26 10:35:53.371025 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Found 1 user emails:
support@rcdevs.com
[Mon Oct 26 10:35:53.371467 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Found 48 user settings:
LoginMode=LDAPOTP,OTPType=TOKEN,OTPFallback=MAIL,PushLogin=Yes,ChallengeMode=Yes,ChallengeTimeout=90,OTPLength=6,MobileTimeout=30,EnableLogin=Yes,SelfRegister=Yes,HOTPLookAheadWindow=25,TOTPTimeStep=30,TOTPTimeOffsetWindow=120,OCRASuite=OCRA-
1:HOTP-SHA1-6:QN06-
T1M,DeviceType=U2F,SMSType=Normal,SMSMode=Ondemand,MailMode=Ondemand,PrefetchExpire=10,LastOTPTime=300,ListChallengeMode=ShowID,ConfirmOptions=
[5 Items]
[Mon Oct 26 10:35:53.372017 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Found 5 user data:
TokenType,TokenKey,TokenState,TokenID,TokenSerial
[Mon Oct 26 10:35:53.372085 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Found 1 registered OTP token
(TOTP)
[Mon Oct 26 10:35:53.372112 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Requested login factors: LDAP

 OTP&
[Mon Oct 26 10:35:53.382710 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] LDAP password Ok
[Mon Oct 26 10:35:53.383006 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Authentication challenge
required
[Mon Oct 26 10:35:53.564385 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Sent push notification for
token #1
[Mon Oct 26 10:35:53.564427 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Waiting 28 seconds for mobile
response
[Mon Oct 26 10:35:59.598111 2020] [192.168.3.56] [OpenOTP:GTZ09PU0] Received mobile
authentication response from 192.170.3.27
[Mon Oct 26 10:35:59.598145 2020] [192.168.3.56] [OpenOTP:GTZ09PU0] > Session:
QIO1HmdExVHo9kr1
[Mon Oct 26 10:35:59.598152 2020] [192.168.3.56] [OpenOTP:GTZ09PU0] > Password: 16 Bytes
[Mon Oct 26 10:35:59.598158 2020] [192.168.3.56] [OpenOTP:GTZ09PU0] Found authentication session
started 2020-10-26 10:35:53
[Mon Oct 26 10:35:59.598252 2020] [192.168.3.56] [OpenOTP:GTZ09PU0] PUSH password Ok (token #1)
[Mon Oct 26 10:35:59.605533 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Updated user data
[Mon Oct 26 10:35:59.607544 2020] [192.168.3.64] [OpenOTP:GTZ09PU0] Sent login success response

This manual was prepared with great care. However, RCDevs Security S.A. and the author cannot assume any legal or other liability for possible errors and their consequences. No
responsibility is taken for the details contained in this manual. Subject to alternation without notice. RCDevs Security S.A. does not enter into any responsibility in this respect. The
hardware and software described in this manual is provided on the basis of a license agreement. This manual is protected by copyright law. RCDevs Security S.A. reserves all rights,
especially for translation into foreign languages. No part of this manual may be reproduced in any way (photocopies, microfilm or other methods) or transformed into machine-readable
language without the prior written permission of RCDevs Security S.A. The latter especially applies for data processing systems. RCDevs Security S.A. also reserves all communication
rights (lectures, radio and television). The hardware and software names mentioned in this manual are most often the registered trademarks of the respective manufacturers and as
such are subject to the statutory regulations. Product and brand names are the property of RCDevs Security. © 2024 RCDevs Security S.A., All Rights Reserved

	RCDevs Identity Provider and integrations SSO Federation SAML OpenID Nextcloud Guacamole Grafana GitLab OnlyOffice Identity Provider Service Provider IDP SP
	1. Overview
	2. WebADM IDP configuration
	2.1 Web Application Settings and Common Features
	2.2 SAML Configuration
	2.3 OpenID Configuration

	3. Configuration of a Service Provider
	3.1 IDP initiated (SAML)
	3.1.1 AWS SAML integration
	3.1.1.1 SAML Configuration on AWS
	3.1.1.2 Configure WebADM IDP for AWS
	3.1.1.3 AWS users/groups/clients policies
	3.1.1.4 Testing/Debug

	3.2.1 SimpleSAMLPHP
	3.2.2 Nextcloud
	3.2.2.1 Requirements
	3.2.2.2 Configuration of “LDAP / AD integration” app
	3.2.2.3 Configuration of “SSO & SAML authentication” app
	3.2.2.4 Global Settings
	3.2.2.5 General
	3.2.2.6 Identity Provider Data
	3.2.2.7 Attribute mapping

	3.3.1 Apache Guacamole

	3.3 Other examples (OpenID/SAML)
	3.3.2 GitLab
	3.3.2.1 Requirements
	3.3.2.2 Configuring SSO in GitLab

	3.3.3 Grafana
	3.3.4 OnlyOffice
	3.3.4.1 Requirements
	3.3.4.2 Configuring SSO in OnlyOffice

	3.3.5 MS Office 365/Azure Integration with an Active Directory Backend
	3.3.5.1 Prerequistes
	3.3.5.2 Get your configuration of your IDP on WebADM
	3.3.5.3 Configure properly your IDP and your Policy on webadm
	3.3.5.4 Set your OpenOTP IDP on AZURE with your domain

	3.3.6 MS Office 365/Azure Integration without an Active Directory Backend
	3.3.6.1 Prerequites
	3.3.6.2 Get your configuration of your IDP on webadm
	3.3.6.3 Configure propely your IDP and your Policies on webadm
	3.3.6.4 Configure your Domain on AZURE
	3.3.6.5 Get the ImmutableId of your User and add it to Azure

	3.3.7 Slack
	3.3.7.1 Slack configuration to use an WebADM IDP (SP configuration)
	3.3.7.2 Configure a WebADM client policy for Slack
	3.3.7.3 Authentication logs for Slack

	3.3.8 Dropbox
	3.3.9 Zabbix
	3.3.10 WordPress (OIDC and SAML)
	3.3.10.1 Using OIDC
	3.3.10.2 Using SAML

	3.3.11 Redmine (SAML)
	3.3.12 Splunk (SAML)
	3.3.13 Syslog-ng store box (OpenID)

	4. How to Create and match a client policy per Service Provider
	4.1 SP Initiated mode
	4.2 IDP initiated mode
	4.3.1 General attributs
	4.3.2 Group filtering in SAML/OpenID responses

	4.4 Test login with AWS

	5. Login debug
	5.1 SAML request
	5.2 Login request on the IDP
	5.2.1 OpenID
	5.2.2 OpenOTP

