
MACOS CREDENTIAL
PROVIDER WebADM and OpenOTP are trademarks of

RCDevs. All further trademarks are the
property of their respective owners.

No guarantee is given for the correctness of
the information contained in this document.
Please send any comments or corrections to
info@rcdevs.com.

The speci cations and information in this
document are subject to change without
notice. Companies, names, and data used in
examples herein are ctitious unless otherwise
noted. This document may not be copied or
distributed by any means, in whole or in part,
for any reason, without the express written
permission of RCDevs Security.

Limited Warranty - Copyright (c) 2010-2024 RCDevs Security SA. All Rights
Reserved. www.rcdevs.com

mailto:info@rcdevs.com
file://www.rcdevs.com

This document provides instructions for installing the OpenOTP Credential Provider for MacOS.

Ensure that WebADM/OpenOTP infrastructure is properly installed and configured before proceeding with the OpenOTP

Credential Provider for MacOS installation. Please, refer to WebADM Installation and WebADM Administration guides to do it.

The OpenOTP Credential Provider for MacOS is a component that integrates the RCDevs OpenOTP authentication into the MacOS

login process and can be downloaded from RCDevs Website

Administrative/elevated permissions are necessary on any MacOS to correctly set up and/or change the OpenOTP Credential

Providerʼs configuration.

To correctly set up the provider, please gather the following minimum information that you will need to know and/or provide

during the installation process:

The URI(s) of the OpenOTP web-service(s) (mandatory)

These URIs are mandatory; the client needs to know where the OpenOTP SOAP API can be reached. At least one URI is

necessary and port 8443 and 443 must be reachable. If you precise the port 8443 to fetch the URLs through the

configuration generator, then only the port 8443 is needed. Else the port 443 will be used to automatically fetch the servers

URLs.

A client ID (recommended)

It is an identifier sent to OpenOTP backend(s) to match a specific client policy during an authentication request. This is

recommended and is a best practice with RCDevs solutions.

The WebADM certificate authority (CA) file. It will be automatically downloaded if you use the configuration generator. If you

only use the command line tool (cputil), then you need to manually retrieve the CA certificate on your WebADM. This is

optional but recommanded for security reasons.

The OpenOTP Credential Provider for MacOS is supported from version 12. The Credential Provider bundle has been built for

both Intel and ARM processors, and the same package is compatible with both architectures.

There are 2 ways to deploy the MacOS CP:

The first option is to use the configuration generator (CPInstaller) to generate the configuration files with the wanted

settings. Once the configuration is generated, you can deploy it using the cputilcputil tool with the installinstall argument.

The secondary option is to use only the cputilcputil tool to generate and deploy the configuration. Both methods are describe

below. If you want to deploy the OpenOTP-CP on multiple MacOS machines and the configuration remains the same on all

of them, then you can generate the configuration once, then deploy it on each machine using the cputilcputil tool with the

installinstall argument.

 MacOS Credential Provider
MacOS

1. Product Documentation

2. Preliminary Information and prerequisites

http://127.0.0.1/tags/macos
http://127.0.0.1/howtos/webadm_install/webadm_install/
http://127.0.0.1/howtos/webadm_admin/webadm_adm_guide/
http://www.rcdevs.com/downloads/Integration+Plugins/

The LDAP password is never sent to OpenOTP for validation, even if the MacOS is domain joined. The LDAP password

validation remains within the MacOS perimeter. That is why the option -LDAP-LDAP is sent to OpenOTP during every

authentication request in case the default policy applied would require the LDAP password.

User accounts can be local accounts or LDAP accounts if MacOS is integrated with an LDAP backend.

Account(s) must exist in WebADM (in LDAP servers configured with WebADM) and must meet the authentication requirements

to be successfully authenticated. If the local username does not match any LDAP account based on the username value sent to

OpenOTP, an alias on the corresponding LDAP account can be created.

Offline login with MFA is supported with the OpenOTP Token mobile application and FIDO2 keys. Enabling offline logins

requires a first successfull online login to be fully enabled. This is because the offline metadata are returned per machine and

per user after an online login. The fact that the offline login is enabled or not is based on the cp.offlinedata.plistcp.offlinedata.plist file

availability once the configuration is deployed. When that file is generated during the setup, only the structure will be there

and the file will be populated after online logins.

Once the OpenOTP-CP for MacOS is configured, the OpenOTP login is by default enforced for every users. You can whitelist

some accounts if you want to bypass OpenOTP authentication for these users. The OpenOTP-CP is by default involved ONLY to

open a session. When you unlock a session, the plugin is not involved. You also have the possibiliy to block access (blacklist)

users account.

192.168.4.20 is the IP address of one node part of my WebADM cluster used as example for that documentation.

First, you have to download OpenOTP Credential Provider for MacOS available on RCDevs Website. Extract files from the archive

on your Mac and run the pkg file. The installer will start and you arrive in the configuration generator. Found below the

description of all settings prompted available on that first page:

Use proxyUse proxy : You can set up a proxy server to pass the connections through it. You have to define it with its hostname, the

port used and if required the credentials to be authenticated on the proxy server. (Optional)

WebADM serverWebADM server and TCP portTCP port : Fill this setting with one of your WebADM server URL (WebADM IP address or DNS name)

and the second one with the TCP port used (both 443 and 8443 works here, it is used to automatically retrieve the OpenOTP

URLs and CA certificate). Then, click on the DownloadDownload button on the right and it will add the OpenOTP URL(s) in the

OpenOTP URLsOpenOTP URLs list just below.

OpenOTP URLsOpenOTP URLs : List of the servers added that the CP will contact. Itʼs possible to directly add a WebADM server URL from

the + button and remove from one with the trash button. (Mandatory)

Server policyServer policy : If you have more than one WebADM server, this is the way the Credential Provider will contact them

Ordered failoverOrdered failover : the first server declared is always preferred;

Round robinRound robin : the server is chosen randomly for each request;

ConsistentConsistent : the first server selection depends on the used ID;

Server checksServer checks : This section concerns the actions done by the CP to check the availability of the OpenOTP service.

3. CPInstaller

3.1 Configuration generation through the CPInstaller

http://www.rcdevs.com/downloads/Integration+Plugins/

Define the interval time in seconds of the checks realized toward the server.

Sending SOAP status request to OpenOTP to retrieve the status of the OpenOTP service. The URL

https://webadm_server_address:8443/status.phphttps://webadm_server_address:8443/status.php is used with that mode. 10 seconds is the timeout of the

SOAP status requests before considering the request timedout. Once timedout, server is considered not available. A new

check will be performed according to the Check server every xxxCheck server every xxx value, here 60 seconds.

Polling of the OpenOTP service port every 60 seconds.

Click NextNext and you are on the second configuration page which contains the following settings:

Enable server authenticationEnable server authentication : This can contain the CA file of your WebADM servers. It can be download by typing

the server URL and the TCP port before using the arrow button. (Recommended for better security)

Client IDClient ID : It is an identifier sent to OpenOTP backend(s) to match a specific client policy during an authentication

request. This is recommended and is a best practice with RCDevs solutions.

WebADM DomainWebADM Domain : It is possible to precise the WebADM domain name that needs to be used during authentication process.

That value can be empty on the client side and configured at the client policy level.

Enable client authenticationEnable client authentication : OpenOTP can be configured to require a

client certificate or an API keyclient certificate or an API key in order to allow its clients to consume its SOAP API. Refer to WebADM

Administrator Guide to issue a client certificate or an API Key. Note that if the client certificate or the API key expires, the client

http://127.0.0.1/howtos/webadm_admin/webadm_adm_guide/
http://127.0.0.1/howtos/webadm_admin/webadm_adm_guide/#16-managing-internal-pki-and-ssl-certificates
http://127.0.0.1/howtos/webadm_admin/webadm_adm_guide/#17-api-keys

(MacOS CP) will not be authorized to consume the OpenOTP SOAP service. The client certificate will always have an expiration,

while the API key may not necessarily have one. (Recommended for better security).

Click NextNext and you are on the third and last configuration page:

Local access controlLocal access control : In this part, you can manage access of users. You can either whitelist or blacklist them. It is

possible to add users with the + button and remove users with the trash button. Authentication of whitelisted users will not

involve OpenOTP. Blacklisted users will not be allowed to login at all on that device. If empty, OpenOTP login is enforced for

every users.

OpenOTP offline loginOpenOTP offline login : Enable this option if you want to use the offline mode of this Credential Provider. This will

permit you to authenticate to your machine even if OpenOTP service is not reachable. Offline login with MFA is supported with

the OpenOTP Token (mobile application) and FIDO2 keys. Enabling the offline logins always requires a first successfull online

login to be activated. Offline login validity is valid up to 1 year and is configured on OpenOTP server side.

Click savesave button and choose the location of where configuration files will be save and click again savesave :

You can now press OkOk on the previous window to close the CPInstaller and the next step is to deploy the configuration with

cputilcputil tool.

In that example, I saved the generated configuration files in a folder where the CPInstaller bundle is located.

To deploy the configuration previously generated in /Users/admin/Desktop/CPInstaller//Users/admin/Desktop/CPInstaller/ folder, we have to use the

cputil command.

Open a terminal with root or sudo permissions and navigate under CPInstaller.app bundle:

You can see in the following output the configuration files which has been generated and the CPInstaller.app bundle:

4. CPutil script

4.1 Deploy the configuration generated by the CPInstaller

root@admins-Mac-mini CPInstaller # pwd
/Users/admin/Desktop/CPInstaller

Navigate now in the following folder which contains the cputilcputil tool:

Here you go, the cputil tool is there. If you execute it without any parameters, you will get the output of supported options:

Found below, the details and usecase of each parameters:

configure: Allow you to generate a new configuration or to reconfigure the CP. If you use that command, the settings

previously configured will be erased. If you just want to modify one parameter, you have to provide all other configuration

parameters.

root@admins-Mac-mini CPInstaller # ls -al
total 48
drwxr-xr-x@ admin staff Dec 10:42 .8 256 5
drwx------+ admin staff Dec 10:43 ..14 448 5
-rw-r--r--@ admin staff Dec 10:40 .DS_Store1 6148 5
drwx------@ admin staff Dec 10:08 CPInstaller.app3 96 5
-rw------- admin staff Dec 10:41 ca.crt1 1991 5
-rw-r--r-- admin staff Dec 10:41 cp.accesslist.plist1 215 5
-rw-r--r-- admin staff Dec 10:41 cp.config.plist1 664 5
-rw-r--r-- admin staff Dec 10:41 cp.offlinedata.plist1 181 5

root@admins-Mac-mini CPInstaller # cd CPInstaller.app/Contents/Resources

root@admins-Mac-mini Resources # ls -al
total 832
drwx------ admin staff Dec 10:08 .10 320 5
drwx------ admin staff Dec 10:08 ..7 224 5
-rwx------ admin staff Dec 10:08 AppIcon.icns1 27612 5
-rwx------ admin staff Dec 10:08 Assets.car1 131016 5
drwx------ admin staff Dec 10:08 Base.lproj3 96 5
drwx------ admin staff Dec 10:08 CP.bundle3 96 5
-rwx------ admin staff Dec 10:08 IconRCDevs.png1 37165 5
-rwx------ admin staff Dec 10:08 cputil1 207472 5
-rwx------ admin staff Dec 10:08 logo-White-Orange.png1 10413 5

root@admins-Mac-mini Resources # ./cputil
cputil <command> options[]
Command s :()
 access <options> ...
 configure <options> ...
 install <options>
 uninstall <options>
root@admins-Mac-mini Resources #

install: Allow you to install the CP and copy the files to the correct locations.

access: That parameter allow you to enable/disable offline login mode and set/unset users from whitelist/blacklist.

uninstall: This parameter can be used to remove the CP and its configuration.

As our configuration has been generated by the CPInstaller, we have to use the command like below with the --indir--indir

parameter pointing to the folder containing the generated configuration:

After execution of that command, the files are deployed in the following location:

To check that everything has been correctly copied, navigate in the previous folder and list the content to be sure that everything

which has been generated by the CPInstaller has been copied:

After successful installation, the authorization database (authorizationdb) should be updated. You can check it with the following

command:

A similar output as below should be prompted:

./cputil install --indir /Users/admin/Desktop/CPInstaller/
CP successfully installed

/Library/Application Support/RCDevs/

root@admins-Mac-mini Resources # cd /Library/Application\ Support/RCDevs/
root@admins-Mac-mini RCDevs # ls -al
-rw------- admin staff Dec 10:41 ca.crt1 1991 5
-rw-r--r-- admin staff Dec 10:41 cp.accesslist.plist1 215 5
-rw-r--r-- admin staff Dec 10:41 cp.config.plist1 664 5
-rw-r--r-- admin staff Dec 10:41 cp.offlinedata.plist1 181 5

root@admins-Mac-mini# security authorizationdb read system.login.console

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">

 <plist version="1.0">
<dict>
 class<key> </key>
 evaluate-mechanisms<string> </string>
 comment<key> </key>
 Login mechanism based rule. Not for general use, yet.<string> </string>
 created<key> </key>
 707673332.60597301<real> </real>
 mechanisms<key> </key>
 <array>
 builtin:policy-banner<string> </string>
 loginwindow:login<string> </string>
 builtin:login-begin<string> </string>
 builtin:reset-password,privileged<string> </string>
 loginwindow:FDESupport,privileged<string> </string>
 builtin:forward-login,privileged<string> </string>
 builtin:auto-login,privileged<string> </string>
 builtin:authenticate,privileged<string> </string>
 PKINITMechanism:auth,privileged<string> </string>
 CP:CPStart,privileged<string> </string>
 CP:CPConfiguration,privileged<string> </string>
 CP:CPAccess,privileged<string> </string>
 CP:CPOffline,privileged<string> </string>
 CP:CPAuthentication,privileged<string> </string>
 CP:CPSave,privileged<string> </string>
 CP:CPDone,privileged<string> </string>
 builtin:login-success<string> </string>
 loginwindow:success<string> </string>
 HomeDirMechanism:login,privileged<string> </string>
 HomeDirMechanism:status<string> </string>
 MCXMechanism:login<string> </string>
 CryptoTokenKit:login<string> </string>
 loginwindow:done<string> </string>
 </array>
 modified<key> </key>
 723467844.683411<real> </real>
 shared<key> </key>
 <true/>
 tries<key> </key>
 10000<integer> </integer>
 version<key> </key>
 10<integer> </integer>
</dict>
</plist>

What has been added in that database is the following content:

Your installation is done.

To generate the configuration files through the cputilcputil script, you must first use the configure argument. With the exception

of the urlurl setting, all parameters share identical names as those specified in the previous example.

The configure command looks like below:

Please refer to section 3 of that documentation to get the settings information.

 <string>CP:CPStart,privileged</string>
 <string>CP:CPConfiguration,privileged</string>
 <string>CP:CPAccess,privileged</string>
 <string>CP:CPOffline,privileged</string>
 <string>CP:CPAuthentication,privileged</string>
 <string>CP:CPSave,privileged</string>
 <string>CP:CPDone,privileged</string>

 ENABLE SSH ACCESS

Before you close your session to test your configuration we recommand you to retrieve the IP address of your MacOS device,

enable the SSH server on it to be able to login through SSH in case you are stuck in the login process. You will be able to drop the

7 previous lines in the authorization db in order to get your access back.

4.2 Generate the configuration files with cputil script

./cputil configure --url <OPENOTP_URL_1> --url <OPENOTP_URL_2> --serverpolicy OPENOTP_ORDERED --
cacertificate <PATH_OF_CA_CERTIFICATE> --clientcertificate <PATH_OF_CLIENT_CERTIFICATE FILE> --
clientcertificatepassword <PASSWORD_OF_CLIENT_CERTIFICATE> --apikey <API_KEY> --clientid
<CLIENT_ID> --domain <WEBADM_DOMAIN> --proxyhost <PROXY_ADDRESS> --proxyport
<PROXY_PORT> --proxyusername <PROXY_USERNAME_VALUE> --proxypassword
<PASSWORD_OF_PROXY_USERNAME> --statuscheckinterval <TIME_INTERVAL_IN_SECONDS> --
soaptimeout <SOAP_TIMEOUT_IN_SECONDS> --statuscheckmethod <CHECK_METHOD> --outdir
/<PATH_YOU_WANT_TO_SAVE_CONFIG>

The CA and client certificates (if any) must be downloaded and available at the provided path before executing the configureconfigure

command. The certificate files will be automatically copied to the correct location during the installation. It is important to note

that when enabling client authentication, you should configure either an API key or a client certificate, but not both

simultaneously. The folder where the configuration is going to be exported will be created by the cputilcputil tool. If the folder

already exist, you will have an error.

Once the configuration is generated, run the script with the install argument and provide the path of your configuration with the

--indir--indir parameter:

Your installation is done.

You can modify few settings via the access argument the following:

–offline enable the offline login mode. If the parameter is not provided during the execution, then offline mode is by default

enabled.

–online disable the offline login mode.

–whitelist allow you to whitelist user(s). List of usernames can be provided in the form user1 user2 user3user1 user2 user3 …

–blacklist allow you to blacklist user(s). List of usernames can be provided in the form user1 user2 user3user1 user2 user3 … (A user

blacklisted takes precedence over a whitelisted user).

–unlist allow you to remove user(s) from the whitelist/blacklist.

–show allow you to show whitelisted and blacklisted accounts.

If you want to edit/change one of the previous listed configuration, you need to use that command as the below examples:

./cputil configure --url https://webadm1.support.rcdevs.com:8443/openotp/ --url
https://webadm2.support.rcdevs.com:8443/openotp/ --serverpolicy OPENOTP_ORDERED --cacertificate
/Users/admin/Desktop/CPInstaller/ca.crt --clientcertificate /Users/admin/Desktop/CPInstaller/client.crt --
clientcertificatepassword password --apikey
3910345158662836058_b027444b382bca04defc0c937a874cd9ba8fac9e --domain SUPPORT --clientid
CPMac --proxyhost http://squid.support.rcdevs.com/ --proxyport --proxyusername svc_proxy --
proxypassword password --statuscheckinterval --soaptimeout --statuscheckmethod
OPENOTP_STATUS --outdir /Users/admin/Desktop/CPInstallerConfig/

3128
60 30

Configuration generated in /Users/admin/Desktop/CPInstallerConfig/

4.3 Install the configuration files with cputil script

./cputil install --indir /Users/admin/Desktop/CPInstallerConfig/
CP successfully installed

4.4 Modify the access configuration

The previous command whitelist the adminadmin account and blacklist the user1user1 account.

This command list whitelisted and blacklisted accounts.

These commands remove adminadmin and user1user1 from the whitelist/blacklist.

You can also do both simultaneously:

The configuration can be modified afterward by using the configure argument. Modifying the configuration involves

reconfiguration of all settings. If you want to change only one setting, then you need to pass in the command all settings

previously configured.

./cputil access --offline/online --whitelist <user> --blacklist <user> --unlist <user>

./cputil access --offline --whitelist admin --blacklist user1

./cputil access --show
admin W user1 B= =

./cputil access --unlist <user>

./cputil access --unlist admin

./cputil access --unlist user1

./cputil access --unlist admin user1

4.5 CP configuration modification

./cputil configure --url https://webadm2.support.rcdevs.com:8443/openotp/ --url
https://webadm3.support.rcdevs.com:8443/openotp/ --serverpolicy OPENOTP_ORDERED --cacertificate
/Users/admin/Desktop/CPInstaller/ca.crt --clientcertificate /Users/admin/Desktop/CPInstaller/client.crt --
clientcertificatepassword password --apikey
3910345158662836058_b027444b382bca04defc0c937a874cd9ba8fac9e --domain SUPPORT --clientid
CPMac --proxyhost http://squid.support.rcdevs.com/ --proxyport --proxyusername svc_proxy2 --
proxypassword newpassword --statuscheckinterval --soaptimeout --statuscheckmethod
OPENOTP_STATUS --outdir Users/admin/Desktop/CPInstallerConfig/

3128
60 30

The uninstallation can be execute as follows:

The previous command will remove the CP in the authorization db and keep the configuration files.

If you want to drop the configuration and the installed files, you can execute the following command:

You can incorporate your own logo in the OpenOTP Credential Provider login screen. For this, you need to copy your logo in the

following location:

The logo must be in PNG format. The size does not matter, it will be resized to the correct one. The logo must be named

cp.logo.pngcp.logo.png .

Please, refer to RCDevs client policy documentation in order to configure your client policy. The Client ID value which has been

configured during the setup is needed for the client policy configuration.

Now the CP is installed and configured then we will perform logins. For the login examples in that documentation, I use the

AdminAdmin account. I had to remove it from the whitelist configuration in order to use OpenOTP authentication for that account.

In this scenario, WebADM and OpenOTP are configured to work in Push Login Mode. Please have a look here to know how to

configure a push login infrastructure.

Iʼm now on the login screen of my Mac, I have to enter my username and password:

4.6 Uninstallation

./cputil uninstall
CP successfully uninstalled

./cputil uninstall --dropconfig
CP successfully uninstalled

4.7 Logo customization

/Library/Application Support/RCDevs/

5. Client policy

6. Online Authentications

6.1 Push Login

http://127.0.0.1/howtos/client_policy/clientpolicy/
http://127.0.0.1/howtos/openotp_push/push_login_openotp/

I press enter and a push login request is sent to my mobile phone.

I press the ApproveApprove button to validate the login.

I am now authenticated, and my session is opening.

I will now perform a login in Challenge mode. Iʼm on the login screen of my Mac and I have to enter my username and password. I

press enter, then the provided credetials are validated before entering in the OpenOTP login process. If the first validation is ok,

then the OpenOTP login process start and a request is sent to OpenOTP server. OpenOTP send me a challenge request to enter

my OTP code:

6.2 Logins with OTP and FIDO2 Challenges

6.2.1 OTP Challenge

I type in my OTP code and I log in to on my Mac.

In case your are using a FIDO2 key, The FIDO authentication will be prompted as below:

Plug your FIDO2 key, if there is a PIN or a Biometric method which is protection the key, you will be invited to provide it. In that

example, my key is protected with a PIN:

Once the PIN password or the biometric method available on your key has been validated by the key, according to the user

presence and user verification settings configured in your policy, you will be invited to touch your key like in the screenshot

below. Press your FIDO2 key to be authenticated.

6.2.2 FIDO Challenge

If your policy is configured to support OTP and FIDO (LoginMode=MFA in OpenOTP) technologies simultaneously, both

challenges will be presented on the challenge screen. Upon receiving the challenges on the client side, if the FIDO key is already

plugged in, the Credential Provider will automatically utilize the FIDO device. If the FIDO key is not plugged in at this moment,

you have the option to plug it in to complete the authentication process with FIDO or use your OTP token by providing the OTP.

An offline mode is available in the OpenOTP Credential Provider for MacOS, and we enabled this option during the configuration.

When your MacOS is offline, you can log in with either an OTP or a FIDO2 key.

The OpenOTP Credential Provider for macOS is unable to contact the OpenOTP server, so it will automatically switch to the

6.2.3 FIDO and OTP Challenge simultaneously

7. Offline Authentication

offline mode. The offline mode will prompt you with a QRCode if you are using the OpenOTP Token or a FIDO2 challenge if you

are using FIDO2 keys.

If both methods are allowed in your policy and registered on your account, then you will have the choice to choose which one

you want to use for your offline login like in the screenshot below:

Once you provided username and password, the OpenOTP Credential Provider for MacOS tries to contact the server which is not

reachable. Then, it falls back to the offline mode, and a screen like the one below is prompted:

 Offline Prerequisites

Regardless the method you use for offline logins, an online login is required to enable offline login mode! You must perform an

online login with each devices you want to enable for offline logins. With OpenOTP Token application, ONLY Token registered on

the first slot is usable in offline mode.

7.1 With OpenOTP Token application

You have to scan this QRCode with the OpenOTP Token application. Open your OpenOTP Token application, press on the camera

button and scan the QRCode.

After scanning the QRCode, a window with an OTP is displayed on your smartphone like below:

Enter your OTP and you are logged on.

7.2 With FIDO2 Key

Plug your FIDO2 device:

Then you are prompted to unlock the key according to the FIDO user verification configured on the server. This will be done

according to the method available on your FIDO key (biometrics or PIN)

Once the user verification is done, press your key.

You are authenticated.

The following commands can be used in order to troubleshoot your CP installation or login issues from the client side:

8. Troubleshooting

8.1 Retrieve MacOS logs for troubleshooting

admin@admins-mbp ~ % log stream | egrep -w 'mechanism|CP:|OpenOTP|RCDevs|FIDO'

2023-11-20 15:32:50.835380+0100 0x1620d7 Default 0xd213a authd:
com.apple.Authorization:authd engine 273: running mechanism builtin:reset-password,privileged of 3

281 0
[] (2)
2023-11-20 15:32:50.836398+0100 0x1620d7 Default 0xd213a authd:
com.apple.Authorization:authd engine 273: running mechanism builtin:authenticate,privileged of 3

281 0
[] (3)
2023-11-20 15:33:12.948339+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism builtin:policy-banner of 23

281 0
[] (1)
2023-11-20 15:33:12.977034+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism loginwindow:login of 23

281 0
[] (2)
2023-11-20 15:33:25.557770+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism builtin:login-begin of 23

281 0
[] (3)
2023-11-20 15:33:25.576388+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism builtin:reset-password,privileged of

23

281 0
[] (4

)
2023-11-20 15:33:25.604180+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism loginwindow:FDESupport,privileged of

23

281 0
[] (5

)
2023-11-20 15:33:25.605694+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism builtin:forward-login,privileged of 23

281 0
[] (6)
2023-11-20 15:33:25.606888+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism builtin:auto-login,privileged of 23

281 0
[] (7)
2023-11-20 15:33:25.608039+0100 0x161f64 Default 0x0 authd: 281 0

Connect to your MacOS through SSH. Once authenticated, use root account to perform the below change or SUDO permissions:

Remove the following lines:

2023-11-20 15:33:25.608039+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism builtin:authenticate,privileged of 23

281 0
[] (8)
2023-11-20 15:33:25.779855+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism PKINITMechanism:auth,privileged of

23

281 0
[] (9

)
2023-11-20 15:33:26.222645+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism CP:CPStart,privileged of 23

281 0
[] (10)
2023-11-20 15:33:26.240724+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism CP:CPConfiguration,privileged of 23

281 0
[] (11)
2023-11-20 15:33:26.243616+0100 0x1625f0 Default 0x0
authorizationhosthelper.arm64: CP RCDevs: CP:Init mechanism: Loading configuration:

7312 0
() {

2023-11-20 15:33:26.255765+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism CP:CPAccess,privileged of 23

281 0
[] (12)
2023-11-20 15:33:26.267146+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism CP:CPOffline,privileged of 23

281 0
[] (13)
2023-11-20 15:33:26.277389+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism CP:CPAuthentication,privileged of

23

281 0
[] (14

)
2023-11-20 15:33:26.290000+0100 0x162611 Default 0x0
authorizationhosthelper.arm64: CP RCDevs: OpenOTP: Server webadm2.support.rcdevs.com:8443 is
available

7312 0
()

2023-11-20 15:33:26.290026+0100 0x162610 Default 0x0
authorizationhosthelper.arm64: CP RCDevs: OpenOTP: Server webadm1.support.rcdevs.com:8443 is
available

7312 0
()

2023-11-20 15:33:26.307878+0100 0x162609 Default 0x0
authorizationhosthelper.arm64: CP RCDevs: OpenOTP: SSL_connect failed

7312 0
()

2023-11-20 15:33:27.326711+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism builtin:policy-banner of 23

281 0
[] (1)
2023-11-20 15:33:27.328360+0100 0x161f64 Default 0x0 authd:
com.apple.Authorization:authd engine 277: running mechanism loginwindow:login of 23

281 0
[] (2)

8.2 Removal of OpenOTP CP through SSH or to retrive access when stuck in the login process

root@admins-Mac-mini# security authorizationdb read system.login.console >
system.login.console.openotp_removed
YES 0()

Save the file and restore the authorization database with the following command:

Now, we clean the file system of installed files:

The plugin is now removed and after a reboot of your MacOS in normal mode, you should be able to log in on your Mac without

OpenOTP Credential Provider.

Mount the file system in read/write mode and navigate to /tmp folder:

<string>CP:CPStart,privileged</string>
<string>CP:CPConfiguration,privileged</string>
<string>CP:CPAccess,privileged</string>
<string>CP:CPOffline,privileged</string>
<string>CP:CPAuthentication,privileged</string>
<string>CP:CPSave,privileged</string>
<string>CP:CPDone,privileged</string>

root@admins-Mac-mini# sudo security authorizationdb write system.login.console <
system.login.console.openotp_removed
YES 0()
root@admins-Mac-mini# rm system.login.console.openotp_removed

root@admins-Mac-mini# rm -rf /Library/Security/SecurityAgentPlugins/CP.bundle/
root@admins-Mac-mini# rm -rf /Library/Application Support/RCDevs/\

8.3 Single-User Mode

 Note

If you are not able to access your Mac through SSH then start your Mac in single-user mode. Check the key combinaison on Apple

support website and then start a shell.

Remove the following lines:

Save the file and restore the authorization database with the following command:

Now, we clean the file system of installed files:

The plugin is now removed and after a reboot of your MacOS in normal mode, you should be able to log in on your Mac without

OpenOTP Credential Provider.

This manual was prepared with great care. However, RCDevs Security S.A. and the author cannot assume any legal or other liability for possible errors and their consequences. No
responsibility is taken for the details contained in this manual. Subject to alternation without notice. RCDevs Security S.A. does not enter into any responsibility in this respect. The
hardware and software described in this manual is provided on the basis of a license agreement. This manual is protected by copyright law. RCDevs Security S.A. reserves all rights,

...
*** Single-user boot ***
Root device is mounted read-only
...

root@admins-Mac-mini# mount -uw /
root@admins-Mac-mini# cd /Volumes/Macintosh HD/tmp\

###Macintosh HD is the name of the Hard Drive on my Mac.

root@admins-Mac-mini# sudo security authorizationdb read system.login.console >
system.login.console.openotp_removed
YES 0()
root@admins-Mac-mini# nano system.login.console.openotp_removed

<string>CP:CPStart,privileged</string>
<string>CP:CPConfiguration,privileged</string>
<string>CP:CPAccess,privileged</string>
<string>CP:CPOffline,privileged</string>
<string>CP:CPAuthentication,privileged</string>
<string>CP:CPSave,privileged</string>
<string>CP:CPDone,privileged</string>

root@admins-Mac-mini# sudo security authorizationdb write system.login.console <
system.login.console.openotp_removed
YES 0()
root@admins-Mac-mini# rm system.login.console.openotp_removed

root@admins-Mac-mini# rm -rf /Volumes/Macintosh HD/Library/Security/SecurityAgentPlugins/CP.bundle/\
root@admins-Mac-mini# rm -rf /Volumes/Macintosh HD/Library/Application Support/RCDevs/\ \
root@admins-Mac-mini# exit

especially for translation into foreign languages. No part of this manual may be reproduced in any way (photocopies, microfilm or other methods) or transformed into machine-readable
language without the prior written permission of RCDevs Security S.A. The latter especially applies for data processing systems. RCDevs Security S.A. also reserves all communication
rights (lectures, radio and television). The hardware and software names mentioned in this manual are most often the registered trademarks of the respective manufacturers and as
such are subject to the statutory regulations. Product and brand names are the property of RCDevs Security. © 2024 RCDevs Security S.A., All Rights Reserved

	MacOS Credential Provider MacOS
	1. Product Documentation
	2. Preliminary Information and prerequisites
	3. CPInstaller
	3.1 Configuration generation through the CPInstaller

	4. CPutil script
	4.1 Deploy the configuration generated by the CPInstaller
	4.2 Generate the configuration files with cputil script
	4.3 Install the configuration files with cputil script
	4.4 Modify the access configuration
	4.5 CP configuration modification
	4.6 Uninstallation
	4.7 Logo customization

	5. Client policy
	6. Online Authentications
	6.1 Push Login
	6.2.1 OTP Challenge

	6.2 Logins with OTP and FIDO2 Challenges
	6.2.2 FIDO Challenge
	6.2.3 FIDO and OTP Challenge simultaneously

	7. Offline Authentication
	7.1 With OpenOTP Token application
	7.2 With FIDO2 Key

	8. Troubleshooting
	8.1 Retrieve MacOS logs for troubleshooting
	8.2 Removal of OpenOTP CP through SSH or to retrive access when stuck in the login process
	8.3 Single-User Mode

