
EAP AUTHENTICATIONS
WebADM and OpenOTP are trademarks of
RCDevs. All further trademarks are the
property of their respective owners. 

No guarantee is given for the correctness of
the information contained in this document.
Please send any comments or corrections to
info@rcdevs.com.

The speci cations and information in this
document are subject to change without
notice. Companies, names, and data used in
examples herein are ctitious unless otherwise
noted. This document may not be copied or
distributed by any means, in whole or in part,
for any reason, without the express written
permission of RCDevs Security.

Limited Warranty - Copyright (c) 2010-2024 RCDevs Security SA. All Rights
Reserved. www.rcdevs.com

mailto:info@rcdevs.com
file://www.rcdevs.com








This documentation provides comprehensive guidance on integrating RCDevs solutions with Extensible Authentication Protocol

(EAP) methods for secure and efficient user and computer authentication. 802.1X is a specific IEEE standard that deals with

network access control and authentication. It is used to ensure that only authorized devices and users can access a network.

Here are the key points about 802.1X:

1. Authentication: 802.1X provides a framework for authenticating devices or users before they are granted access to a network.

This authentication can involve various methods, including username and password, digital certificates, or other credentials.

2. Port-Based Control: The standard is often used in Ethernet networks, and it operates at the data link layer (Layer 2) of the OSI

model. It enables the control of network access based on the physical port of the network switch to which a device is

connected. This means that when a device is plugged into a port on a switch, it must authenticate itself before itʼs allowed to

communicate on the network.

3. Security: 802.1X enhances network security by preventing unauthorized devices from connecting to the network. It helps

protect against unauthorized access and potential security threats.

4. EAP (Extensible Authentication Protocol): 802.1X typically uses EAP to handle the authentication process. EAP is a flexible

authentication framework that supports various authentication methods.

5. In 802.1X authentication, there are three key components:

Supplicant: This is the device or user thatʼs trying to gain access to the network. It initiates the authentication process.

Authenticator: This is the network device (e.g., a switch or wireless access point) that enforces authentication on the

physical port.

Authentication Server: This is the server responsible for validating the credentials provided by the supplicant.

6. Role-Based Access Control: Once authentication is successful, 802.1X can also enforce role-based access control. This means

that different users may have different levels of access or permissions within the network by assigning him a VLAN or a

privilege level and more. Possibilities will depend on what it supported by your Authenticator equipment. That part is

achieved by returning supported RADIUS attributes to the authenticator and where attribute(s) value(s) is/are configurable

and stored centrally in WebADM users or groups. As an example, I can return a different VLAN assignation based on Usersʼ

groups membership.

Overall, 802.1X is widely used in enterprise networks and provides a robust mechanism for ensuring network security and

controlling access to network resources.

RCDevs solutions offer a versatile platform for implementing robust authentication mechanisms that cater to a wide range of use

cases. In this document, we will explore EAP authentication methods and configurations supported by RCDevs solutions but also

the custom integrations of the OpenOTPPKILogin method which is also used by Radius Bridge to deals with OpenOTP and let

OpenOTP validate the certificate.

Certificate based authentication involve a PKI service. The default and recommended setup which will support all features

  EAP Authentications
WLAN EAP EAP-TLS EAP-TTLS EAP-GTC 802.1X OCSP NAC Network Access Control Wifi Switch Router Port Based authentication WIFI Authentication LAN Authentication

1. Overview

http://127.0.0.1/tags/wlan
http://127.0.0.1/tags/eap
http://127.0.0.1/tags/eap-tls
http://127.0.0.1/tags/eap-ttls
http://127.0.0.1/tags/eap-gtc
http://127.0.0.1/tags/802.1x
http://127.0.0.1/tags/ocsp
http://127.0.0.1/tags/nac
http://127.0.0.1/tags/network-access-control
http://127.0.0.1/tags/wifi
http://127.0.0.1/tags/switch
http://127.0.0.1/tags/router
http://127.0.0.1/tags/port-based-authentication
http://127.0.0.1/tags/wifi-authentication
http://127.0.0.1/tags/lan-authentication
http://127.0.0.1/howtos/radius_attrs/radius_attrs/


described into that documentation is with the WebADM internal PKI service. That service is running in all WebADM infrastructure

and is named Rsignd.

With that setup, you will be able to issue users and clients certificates which will be used for authentications.

Issued user certificates are always stored on the corresponding user object in the LDAP backend (in the userCertificate attribute).

Other type of certificates are stored in the SQL database configured with WebADM.

For a well-structured PKI infrastructure design, especially if you already have an operational PKI service within your

infrastructure, we recommend configuring WebADM as a Subordinate Certificate Authority of your Enterprise CA as explained in

that documentation. Additionally, please consult the WebADM administration guide for comprehensive information regarding

the PKI service, including certificate issuance and management processes.

It is also possible to use a user certificate issued by an external PKI service, provided that the certificate is stored on the userʼs

LDAP object in the ʻuserCertificateʼ attribute. However, there are some limitations associated with this scenario. One notable

limitation is that EAP negotiation requires certificates issued by the same certificate authority (CA). If there is a mismatch

between the CA of the certificates provided by the supplicant and the CA used by the authenticator, the EAP negotiation will fail.

That scenario will work in custom integrations where you implement yourself the OpenOTPPKILogin API method and on RCDevs

web portals (WebADM Admin GUI, WebApps logins).

For computer authentications based on SSL certificates, the certificate must be a ClientClient  type when you are issuing it. For

massive client certificate deployment, you can script your CSR and key generation and massively submit the CSRs to the Manager

API of WebADM. The API method which can be used for this purpose is called Sign_Certificate_Request. The response will return

the signed certificate in PEM format. 

Client certificates can be issued through WebADM Manager APIs or WebADM admin GUI only by a WebADM super_admin or an

other_admin. Non-administrative users do not have the capability to issue client certificates, as this responsibility should remain

within the purview of the IT/Security department(s).

For user authentication, the certificate must be a UserUser  type when you are issuing it. User certificate can be issued by the end-

user itself through the Self-Services provided by RCDevs, from the WebADM Admin portal and from Manager API. For massive user

certificate deployment, you can script your CSR and key generation and massively submit the CSRs to the Manager API of

WebADM. The API method which can be used for this purpose is the same as for client certificate (Sign_Certificate_Request). The

response will returned the signed certificate in PEM format.

Please, refer to the WebADM Administrator Guide to issue User, Server and client certificates.

1.1 PKI Service

1.2 Certificates

http://127.0.0.1/howtos/webadm_as_sub_ca/webadm_subordinate_ca/
http://127.0.0.1/howtos/webadm_admin/webadm_adm_guide/#16-managing-internal-pki-and-ssl-certificates
http://127.0.0.1/howtos/webadm_admin/webadm_adm_guide/#16-managing-internal-pki-and-ssl-certificates








RCDevs solutions provide a unified authentication framework for both users and computers, ensuring secure access control

across your organization.

1. User Authentication Based on User Certificate (EAP-TLS): RCDevs supports EAP-TLS (Transport Layer Security)

authentication, allowing users to authenticate using digital certificates. This method enhances security by validating user

identity through their unique certificates.

2. User Authentication Based on LDAP Credentials and optionally MFA (EAP-TTLS): RCDevs supports EAP-TTLS for user

authentication. Additionally, you can enhance security by implementing Multi-Factor Authentication (MFA) in this mode. The

asked credentials during the authentication will depend on what is configured in your authentication policy(ies) configured at

the WebADM level.

3. Computer Authentication Based on Client Certificate (EAP-TLS): RCDevs supports EAP-TLS (Transport Layer Security)

authentication, allowing computers to authenticate using digital certificates. This method enhances security by validating

computer identity through their unique certificates.

The protocol used between supplicant and authenticator is EAP and between the authenticator and the authentication server is

RADIUS.

OpenOTP provides SOAP API methods that can be integrated wherever you want to authenticate users/computers with SSL

certificates. The same SOAP method is used by RADIUS Bridge to build and forward the authentication requests to OpenOTP. The

API method will be described later in that documentation.

You must meet the following requirements in order to set up EAP authentications:

Minimum WebADM version is v2.3.7: Ensure that WebADM is installed at version 2.3.7 or higher. This version of WebADM is

necessary to provide the infrastructure and support for computer certificate-based authentication.

Minimum OpenOTP version is 2.2.9: OpenOTP is an integral part of the authentication process. Verify that OpenOTP is

installed and configured, and it should be at version 2.2.9 or higher to ensure compatibility with the other components.

Minimum RADIUS Bridge version is 1.3.32: The RADIUS Bridge plays a crucial role in integrating EAP authentication with

RADIUS-based network access control. Ensure that the RADIUS Bridge is installed and configured correctly, and it should be

running version 1.3.32 or higher to maintain compatibility with WebADM and OpenOTP.

We are not explaining the Radius Bridge setup in that documentation. If Radius Bridge component is not installed and configured

with your WebADM, please refer to the Radius Bridge documentation.

1.3 Supported EAP scenarios and transport

1.4 Custom integrations for Certificate based authentications

1.5 Prerequisites

2. Radius Bridge configuration for EAP (Authentication Server)

2.1 Radius Server configuration for EAP-TLS support

http://127.0.0.1/howtos/radius_bridge/rb_manual/






In order to enable the certificate based authentication feature of Radius Bridge there is 2 settings that you need to enable

according to your needs:

For user certificate based authentication, you have to enable the following setting in

/opt/radiusd/conf/radiusd.conf/opt/radiusd/conf/radiusd.conf  located at the end of the configuration file:

That setting is mandatory to enable certificate based authentication for both users and computers.

For computer certificate based authentication, you have to also enable the following setting in

/opt/radiusd/conf/radiusd.conf/opt/radiusd/conf/radiusd.conf  located at the end of the configuration file:

If not enabled, you will not be able to authenticate client certificates stored in the SQL.

Once the settings are configured, please restart Radius Bridge service.

On your Radius Bridge server, edit the /opt/radiusd/conf/clients.conf/opt/radiusd/conf/clients.conf  and add the RADIUS client (with IP address,

port and RADIUS secret) for your equipment supporting EAP protocols (Switches, WLAN Controllers, routers…).

Example:

Once your EAP clients are configured, please restart Radius Bridge service.

cert_support  yes=

machine_cert  yes=

/opt/radiusd/bin/radiusd restart

2.2 Radius Client Configuration

client Cisco_Catalyst_Switch {
    ipaddr           192.168.4.253=
    secret           my_secret=
}

client Cisco_WLAN_Controller {
    ipaddr           192.168.4.252=
    secret           testing123=
}

/opt/radiusd/bin/radiusd restart



In that example, we use a Cisco WLAN controller.

The step is to configure wireless to use WPA2 Enterprise security mode and to define the RADIUS server as the authentication

server for your WLAN. The specific configuration depends on the brand and model of your WLAN equipment. Please refer to your

provider documentation for that part.

We must add a RADIUS AAA Server configuration to your Cisco WLAN controller:

1. Login to the WLC GUI.

2. Click Security and RADIUS > Authentication.

3. In the RADIUS Authentication servers page appears, click New to add a new RADIUS Authentication Server.

4. Enter the RADIUS server corresponding to the Radius Bridge configuration in chapter 2.

Next, configure the WLAN networks and settings:

1. Open the WLANs page from the controller web interface.

2. Choose an existing or create a new WLAN.

3. In the “Security” tab, open the “AAA Servers” sub tab.

4. Select the RADIUS server you configured as the “Authentication server”.

5. Click Apply to save your configuration.

The below image provides an example of Cisco Linksys wireless router configuration. 

3. Authenticator configuration examples

3.1 WLAN Cisco Controller



If you have a standalone WLAN access point or router, without a centralized controller, you must configure the RADIUS server on

each access point.

To configure 802.1X on my Switch, I followed the Cisco documentation. Please refer to your provider documentation to setup

port based authentication (802.1X) on your switches.

Recent Windows versions have native support for the required authentication protocols, so it is possible to use certificates for

authentication without additional software.

First, we must install the CA certificate of your WebADM on the Windows client. Open the CA certificate in Windows and click

Install CertificateInstall Certificate . 

3.2 For WLAN Access Point

3.3 Cisco Switch Catalyst

4. Supplicants configurations

4.1 Windows 10/11

4.1.1 User certificate based authentication

https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst2960/software/release/12-2_46_se/configuration/guide/scg1/sw8021x.pdf


Click NextNext  on the following page in Certificate Import Wizard. 

On the next page, select the certificate store in which the certificate should be installed. You must install the certificate in the

“Trusted Root Certification Authorities”. Click NextNext  followed by FinishFinish  on the next page. 



Next, we install the user certificate downloaded from Self-Service to the Windows client. Open the user certificate, select

“Current User” in the wizard and click “Next” two times. 

When the wizard asks for the password for the certificate, input the password youʼve received in the Self-Service desk when

downloading the certificate. 



You can let Windows select the certificate store for the user certificate automatically. Click “Next” followed by FinishFinish . 

Now we can connect to the wireless network, find the network in question from your network connections and click “Connect”.



When you are prompted for username and password, select “Connect using a certificate”. 

Choose the user certificate youʼve installed previously, click “OK” followed by “Connect”. 

You can copy the p12 bundle previously created on your Windows machine. You also have to Trust the CA certificate of WebADM

on your Windows machine. The CA certificate can be downloaded at https://webadm_server_address/cacerthttps://webadm_server_address/cacert

You must add the CA certificate to the Trusted Root Certification AuthoritiesTrusted Root Certification Authorities  in the computer store. 

4.1.2 Device certificate based authentication



The client certificate (p12 bundle) must be installed in the PersonalPersonal  folder within the computer store. During the import

process, you will be prompted to enter the password you set during the client certificate generation. For security reasons, you

should also take measures to prevent the private key from being exported to minimize the risk of the certificate being reused on

another machine.

Once the certificate import is done, you can configure your network interface to set up the 802.1x authentication.

Access the Control PanelControl Panel  menu then click on Network ConnectionsNetwork Connections . Right-click on the Ethernet adapter that you

want to configure then click PropertiesProperties . 



In PropertiesProperties , click AuthenticationAuthentication  tab, enable the checkbox IEEE 802.1X AuthenticationIEEE 802.1X Authentication  and choose the

network authentication method to Microsoft: Smartcard or other CertificateMicrosoft: Smartcard or other Certificate . Click then the SettingsSettings

button. 



Once you are on the Configure Certificate selection view, enable the checkbox Certificate IssuerCertificate Issuer  and you can choose

the WebADM CA certificate previously imported in the Trusted Root Certification AuthoritiesTrusted Root Certification Authorities . Click OkOk . 

You are back to the previous page, click now the Additional SettingsAdditional Settings  button. 



You are redirected to the following page:

As we imported the certificate in the Computer Personal Certificate Store, I enabled the option

Use a certificate from this computer.Use a certificate from this computer.  If the certificate is uploaded on a smartcard, then keep

Use my smart cardUse my smart card  and the smartcard will have to be connected to the computer in order to use the certificate stored on

it. Click then on AdvancedAdvanced  button and choose the authentication mode to Computer AuthenticationComputer Authentication  



0  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 173 193
0    NAS-IP-Address  192.168.4.253( ) =
0    NAS-Port  ( ) = 50002
0    NAS-Port-Type  Ethernet( ) =
0    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
0    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
0    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
0    Service-Type  Framed-User( ) =
0    Framed-MTU  ( ) = 1500
0    EAP-Message  

0x0200002c01686f73742f4445534b544f502d41364d4c584a4f2e737570706f72742e7263646576732e636f6d
( ) =

0    Message-Authenticator  0x2ac5b9393ab7c8d5d914660863a56a72( ) =
0  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
0    authorize ( ) {
0  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 0 44
0  eap: Continuing tunnel setup( )
0      eap   ok( ) [ ] =
0     ( ) } # authorize = ok
0  Found Auth-Type  EAP( ) =
0  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
0    Auth-Type EAP ( ) {
0  eap: Peer sent packet with method EAP Identity 1( ) ( )
0  eap: Calling submodule eap_ttls to process data( )
0  eap_ttls: TLS  Initiating new session( ) ( )
0  eap: Sending EAP Request code 1  ID  length ( ) ( ) 1 6
0  eap: EAP session adding &reply:State  0x2a019a2d2a008f61( ) =
0      eap   handled( ) [ ] =
0     ( ) } # Auth-Type EAP = handled
0  Using Post-Auth-Type Challenge( )



0  Using Post-Auth-Type Challenge( )
0  Post-Auth-Type sub-section not found.  Ignoring.( )
0  session-state: Saving cached attributes( )
0    Framed-MTU  ( ) = 994
0  Sent Access-Challenge Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 173 64
0    EAP-Message  0x010100061520( ) =
0    Message-Authenticator  0x00000000000000000000000000000000( ) =
0    State  0x2a019a2d2a008f6172f171851926dbf8( ) =
0  Finished request( )

Waking up in 9.9 seconds.
1  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 174 173
1    NAS-IP-Address  192.168.4.253( ) =
1    NAS-Port  ( ) = 50002
1    NAS-Port-Type  Ethernet( ) =
1    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
1    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
1    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
1    Service-Type  Framed-User( ) =
1    Framed-MTU  ( ) = 1500
1    State  0x2a019a2d2a008f6172f171851926dbf8( ) =
1    EAP-Message  0x02010006030d( ) =
1    Message-Authenticator  0x298794c7ffc1e7c59739b04ca20727dc( ) =
1  Restoring &session-state( )
1    &session-state:Framed-MTU  ( ) = 994
1  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
1    authorize ( ) {
1  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 1 6
1  eap: Continuing tunnel setup( )
1      eap   ok( ) [ ] =
1     ( ) } # authorize = ok
1  Found Auth-Type  EAP( ) =
1  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
1    Auth-Type EAP ( ) {
1  eap: Expiring EAP session with state 0x2a019a2d2a008f61( )
1  eap: Finished EAP session with state 0x2a019a2d2a008f61( )
1  eap: Previous EAP request found  state 0x2a019a2d2a008f61, released from the list( ) for
1  eap: Peer sent packet with method EAP NAK 3( ) ( )
1  eap: Found mutually acceptable type TLS 13( ) ( )
1  eap: Calling submodule eap_tls to process data( )
1  eap_tls: TLS  Initiating new session( ) ( )
1  eap_tls: TLS  Setting verify mode to require certificate from client( ) ( )
1  eap: Sending EAP Request code 1  ID  length ( ) ( ) 2 6
1  eap: EAP session adding &reply:State  0x2a019a2d2b039761( ) =
1      eap   handled( ) [ ] =
1     ( ) } # Auth-Type EAP = handled
1  Using Post-Auth-Type Challenge( )
1  Post-Auth-Type sub-section not found.  Ignoring.( )
1  session-state: Saving cached attributes( )
1    Framed-MTU  ( ) = 994
1  Sent Access-Challenge Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 174 64



1    EAP-Message  0x010200060d20( ) =
1    Message-Authenticator  0x00000000000000000000000000000000( ) =
1    State  0x2a019a2d2b03976172f171851926dbf8( ) =
1  Finished request( )

Waking up in 9.9 seconds.
2  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 175 430
2    NAS-IP-Address  192.168.4.253( ) =
2    NAS-Port  ( ) = 50002
2    NAS-Port-Type  Ethernet( ) =
2    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
2    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
2    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
2    Service-Type  Framed-User( ) =
2    Framed-MTU  ( ) = 1500
2    State  0x2a019a2d2b03976172f171851926dbf8( ) =
2    EAP-Message  

0x020201050d80000000fb16030100f6010000f2030386a0bc99a2f21bee48f1aa5956c7f89efff335f808418dd762d44b52d0f5ccb0200444ec26f2baecbe3ce507ea354473e31257b166231580778d8722c53ae867e8002813021301c02cc02bc030c02fc024c023c028c027c00ac009c014c013009d009c003d003c0035002f01000081000500050100000000002b0009080304030303020301000d001a001808040805080604010501020104030503020302020601060300230000000a00080006001d00170018003300260024001d00205403e7224a730c70a4ccf2887869da44813aec81f75019fe23ad025be5fce1750031000000170000ff01000100002d00020101
( ) =

2    Message-Authenticator  0xb8625c14068a4f535607ebc48f9b1d5d( ) =
2  Restoring &session-state( )
2    &session-state:Framed-MTU  ( ) = 994
2  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
2    authorize ( ) {
2  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 2 261
2  eap: Continuing tunnel setup( )
2      eap   ok( ) [ ] =
2     ( ) } # authorize = ok
2  Found Auth-Type  EAP( ) =
2  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
2    Auth-Type EAP ( ) {
2  eap: Expiring EAP session with state 0x2a019a2d2b039761( )
2  eap: Finished EAP session with state 0x2a019a2d2b039761( )
2  eap: Previous EAP request found  state 0x2a019a2d2b039761, released from the list( ) for
2  eap: Peer sent packet with method EAP TLS 13( ) ( )
2  eap: Calling submodule eap_tls to process data( )
2  eap_tls: TLS  EAP Peer says that the final record size will be  bytes( ) ( ) 251
2  eap_tls: TLS  EAP Got all data  bytes( ) ( ) (251 )
2  eap_tls: TLS  Handshake state - before SSL initialization( ) ( )
2  eap_tls: TLS  Handshake state - Server before SSL initialization( ) ( )
2  eap_tls: TLS  Handshake state - Server before SSL initialization( ) ( )
2  eap_tls: TLS  recv TLS 1.3 Handshake, ClientHello( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS read client hello( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, ServerHello( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write server hello( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, Certificate( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write certificate( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, ServerKeyExchange( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write key exchange( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, CertificateRequest( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write certificate request( ) ( )



2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write certificate request( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, ServerHelloDone( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write server ( ) ( ) done
2  eap_tls: TLS  Server : Need to read more data: SSLv3/TLS write server ( ) ( ) done
2  eap_tls: TLS  In Handshake Phase( ) ( )
2  eap: Sending EAP Request code 1  ID  length ( ) ( ) 3 1004
2  eap: EAP session adding &reply:State  0x2a019a2d28029761( ) =
2      eap   handled( ) [ ] =
2     ( ) } # Auth-Type EAP = handled
2  Using Post-Auth-Type Challenge( )
2  Post-Auth-Type sub-section not found.  Ignoring.( )
2  session-state: Saving cached attributes( )
2    Framed-MTU  ( ) = 994
2    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
2    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
2    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
2    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
2    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
2    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
2  Sent Access-Challenge Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 175 1068
2    EAP-Message  

0x010303ec0dc000000cb3160303003502000031030302d214a8f835dfda6fe8933ad05921668c24f6ce99a81546f81a258f9bd36fb700c030000009ff01000100001700001603030a8a0b000a86000a830004f4308204f0308202d8a003020102021100e146ed9003522922e87d26ff478958e7300d06092a864886f70d01010b0500304c3117301506035504030c0e52434465767320526f6f74204341310b3009060355040b0c02434131173015060355040a0c0e52434465767320537570706f7274310b3009060355040613024c55301e170d3233303931353134333732395a170d3333303931323134333732395a30363123302106035504030c1a77656261646d312e737570706f72742e7263646576732e636f6d310f300d060355040d0c0653455256455230820122300d06092a864886f70d01010105000382010f003082010a0282010100a626353e93abdfe0f3dd8b91e23f6e22640cdab9c0f44023e2cfd17642038bea3e12b5f4f98d6c575611fb3aee9f
( ) =

2    Message-Authenticator  0x00000000000000000000000000000000( ) =
2    State  0x2a019a2d2802976172f171851926dbf8( ) =
2  Finished request( )

Waking up in 9.9 seconds.
3  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 176 173
3    NAS-IP-Address  192.168.4.253( ) =
3    NAS-Port  ( ) = 50002
3    NAS-Port-Type  Ethernet( ) =
3    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
3    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
3    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
3    Service-Type  Framed-User( ) =
3    Framed-MTU  ( ) = 1500
3    State  0x2a019a2d2802976172f171851926dbf8( ) =
3    EAP-Message  0x020300060d00( ) =
3    Message-Authenticator  0x05115c60ec77564bc18f7ae8bb79695f( ) =
3  Restoring &session-state( )
3    &session-state:Framed-MTU  ( ) = 994
3    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
3    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
3    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
3    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
3    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
3    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
3  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
3    authorize ( ) {
3  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 3 6



3  eap: Continuing tunnel setup( )
3      eap   ok( ) [ ] =
3     ( ) } # authorize = ok
3  Found Auth-Type  EAP( ) =
3  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
3    Auth-Type EAP ( ) {
3  eap: Expiring EAP session with state 0x2a019a2d28029761( )
3  eap: Finished EAP session with state 0x2a019a2d28029761( )
3  eap: Previous EAP request found  state 0x2a019a2d28029761, released from the list( ) for
3  eap: Peer sent packet with method EAP TLS 13( ) ( )
3  eap: Calling submodule eap_tls to process data( )
3  eap_tls: TLS  Peer ACKed our handshake fragment( ) ( )
3  eap: Sending EAP Request code 1  ID  length ( ) ( ) 4 1004
3  eap: EAP session adding &reply:State  0x2a019a2d29059761( ) =
3      eap   handled( ) [ ] =
3     ( ) } # Auth-Type EAP = handled
3  Using Post-Auth-Type Challenge( )
3  Post-Auth-Type sub-section not found.  Ignoring.( )
3  session-state: Saving cached attributes( )
3    Framed-MTU  ( ) = 994
3    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
3    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
3    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
3    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
3    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
3    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
3  Sent Access-Challenge Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 176 1068
3    EAP-Message  

0x010403ec0dc000000cb365e0f50616561bd3e6513de7f3d235c02f1b51e30e2d3ab6bb527998a88654452c996c1638879be839c30a00173adeebbb799fa918c060ef2e47ed9a52b10dd0336dc6eb82714326fc85f34f2c53ceb07f38a41dfc2a30663a24a8ac02415895781717b32a5518a8ea878e93a6933688886e819b6f53b79d774daaece9c1956351a6dfe87afeb2777d91fe567960abea5e8a9d2f6403fc6e63c89ec503a5e8a5f877b57985156eb8574a0155bb239ffcde1425a4863377563effe103b3fda420f4a613e0d551491eafeef2d4e5634d840224702d319bf264e28484d1146cc8c8e3af6d31928e54999bf45ad5cc8def69a061e6a5d198254b07230c12e087ba551e5314bdec4757427db28f83db8fc8d929e48c4974e5da3ce0fcae913f63e580e84f2009685176b06f9add929267c4828e8ad2c73304b919bcc91eb928f7a878a8c106ddda8749f5ce56d94e4292b1a7c25418a1680ecdb40913c8000589308205853082036da0030201020214
( ) =

3    Message-Authenticator  0x00000000000000000000000000000000( ) =
3    State  0x2a019a2d2905976172f171851926dbf8( ) =
3  Finished request( )

Waking up in 9.9 seconds.
4  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 177 173
4    NAS-IP-Address  192.168.4.253( ) =
4    NAS-Port  ( ) = 50002
4    NAS-Port-Type  Ethernet( ) =
4    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
4    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
4    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
4    Service-Type  Framed-User( ) =
4    Framed-MTU  ( ) = 1500
4    State  0x2a019a2d2905976172f171851926dbf8( ) =
4    EAP-Message  0x020400060d00( ) =
4    Message-Authenticator  0x59860564389662c6f35e69fcc49af4ab( ) =
4  Restoring &session-state( )
4    &session-state:Framed-MTU  ( ) = 994
4    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
4    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"



4    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
4    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
4    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
4    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
4    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
4  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
4    authorize ( ) {
4  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 4 6
4  eap: Continuing tunnel setup( )
4      eap   ok( ) [ ] =
4     ( ) } # authorize = ok
4  Found Auth-Type  EAP( ) =
4  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
4    Auth-Type EAP ( ) {
4  eap: Expiring EAP session with state 0x2a019a2d29059761( )
4  eap: Finished EAP session with state 0x2a019a2d29059761( )
4  eap: Previous EAP request found  state 0x2a019a2d29059761, released from the list( ) for
4  eap: Peer sent packet with method EAP TLS 13( ) ( )
4  eap: Calling submodule eap_tls to process data( )
4  eap_tls: TLS  Peer ACKed our handshake fragment( ) ( )
4  eap: Sending EAP Request code 1  ID  length ( ) ( ) 5 1004
4  eap: EAP session adding &reply:State  0x2a019a2d2e049761( ) =
4      eap   handled( ) [ ] =
4     ( ) } # Auth-Type EAP = handled
4  Using Post-Auth-Type Challenge( )
4  Post-Auth-Type sub-section not found.  Ignoring.( )
4  session-state: Saving cached attributes( )
4    Framed-MTU  ( ) = 994
4    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
4    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
4    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
4    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
4    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
4    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
4  Sent Access-Challenge Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 177 1068
4    EAP-Message  

0x010503ec0dc000000cb30f002062e83091a12eb1cb6c0b967dd3b1b83533e17ddd8ab58bdd705e30150f3d451d3c15cec13ba5a462a105aa86b908319b0101fbd639e092f88b85177fd3ad65f0a0934c8101798b1e615f55940e707d5d990317e1b5d05dd3e88be78b5218c2312df11648a708b2c5a178681fec0ae7529b2527604fa0a6991d8e917c668020aeb9977f1ce1a3ba5cc8bd0203010001a35d305b301d0603551d0e04160414624a8c17527066792347a4bad2c98423d4783fde301f0603551d23041830168014624a8c17527066792347a4bad2c98423d4783fde300c0603551d13040530030101ff300b0603551d0f040403020186300d06092a864886f70d01010b05000382020100a22c1eb20b596c930477214c2a2a3a7f83b49cbfbe765f787cc5c87fa133ffd03a78ea1d8ea5965bacfccf96fedd63a2e26f2beefb50d92700128507aae4304057fc110e3382496f6d8d048ffda9d930dbd7a375800e20accc6d8c83296d344e3315b8ba5e61676e
( ) =

4    Message-Authenticator  0x00000000000000000000000000000000( ) =
4    State  0x2a019a2d2e04976172f171851926dbf8( ) =
4  Finished request( )

Waking up in 9.9 seconds.
5  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 178 173
5    NAS-IP-Address  192.168.4.253( ) =
5    NAS-Port  ( ) = 50002
5    NAS-Port-Type  Ethernet( ) =
5    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
5    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
5    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
5    Service-Type  Framed-User( ) =
5    Framed-MTU  ( ) = 1500



5    Framed-MTU  ( ) = 1500
5    State  0x2a019a2d2e04976172f171851926dbf8( ) =
5    EAP-Message  0x020500060d00( ) =
5    Message-Authenticator  0x21398d5fd30706f8857b51fd3ee7ea0d( ) =
5  Restoring &session-state( )
5    &session-state:Framed-MTU  ( ) = 994
5    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
5    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
5    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
5    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
5    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
5    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
5  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
5    authorize ( ) {
5  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 5 6
5  eap: Continuing tunnel setup( )
5      eap   ok( ) [ ] =
5     ( ) } # authorize = ok
5  Found Auth-Type  EAP( ) =
5  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
5    Auth-Type EAP ( ) {
5  eap: Expiring EAP session with state 0x2a019a2d2e049761( )
5  eap: Finished EAP session with state 0x2a019a2d2e049761( )
5  eap: Previous EAP request found  state 0x2a019a2d2e049761, released from the list( ) for
5  eap: Peer sent packet with method EAP TLS 13( ) ( )
5  eap: Calling submodule eap_tls to process data( )
5  eap_tls: TLS  Peer ACKed our handshake fragment( ) ( )
5  eap: Sending EAP Request code 1  ID  length ( ) ( ) 6 279
5  eap: EAP session adding &reply:State  0x2a019a2d2f079761( ) =
5      eap   handled( ) [ ] =
5     ( ) } # Auth-Type EAP = handled
5  Using Post-Auth-Type Challenge( )
5  Post-Auth-Type sub-section not found.  Ignoring.( )
5  session-state: Saving cached attributes( )
5    Framed-MTU  ( ) = 994
5    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
5    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
5    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
5    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
5    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
5    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
5  Sent Access-Challenge Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 178 339
5    EAP-Message  

0x010601170d8000000cb3e5c5a1a7ee59b56934c4592faba1840501006c799ebd2af51f07c58bbcec8894627f5fc8e35030611df99af24cb7ac8e963c6a1c24781cc62a7999c7058b25ccef7f1976583df3cf0355a4bd8dab1e57f87ba6f67f46df093a8f8badebba21dd02d5692fa84e0ab39655dc92ce13edb1463519715b160303008a0d00008603010240002e040305030603080708080809080a080b0804080508060401050106010303020303010201030202020402050206020050004e304c3117301506035504030c0e52434465767320526f6f74204341310b3009060355040b0c02434131173015060355040a0c0e52434465767320537570706f7274310b3009060355040613024c5516030300040e000000
( ) =

5    Message-Authenticator  0x00000000000000000000000000000000( ) =
5    State  0x2a019a2d2f07976172f171851926dbf8( ) =
5  Finished request( )

Waking up in 9.9 seconds.
6  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 179 1669



6  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 179 1669
6    NAS-IP-Address  192.168.4.253( ) =
6    NAS-Port  ( ) = 50002
6    NAS-Port-Type  Ethernet( ) =
6    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
6    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
6    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
6    Service-Type  Framed-User( ) =
6    Framed-MTU  ( ) = 1500
6    State  0x2a019a2d2f07976172f171851926dbf8( ) =
6    EAP-Message  

0x020605d40dc0000006c6160303068e0b00053c000539000536308205323082031aa003020102021100d9cd10deb891f2698216842aaae5cc53300d06092a864886f70d01010b0500304c3117301506035504030c0e52434465767320526f6f74204341310b3009060355040b0c02434131173015060355040a0c0e52434465767320537570706f7274310b3009060355040613024c55301e170d3233303931383136303030395a170d3234303931373136303030395a3070312b302906035504030c224445534b544f502d41364d4c584a4f2e737570706f72742e7263646576732e636f6d310f300d060355040d0c06434c49454e5431173015060355040a0c0e52434465767320537570706f72743117301506035504610c0e5641544c552d303030303030303030820122300d06092a864886f70d01010105000382010f003082010a0282010100cab994b6c25bd1e731496149f4c710b0b6b4d79201e9670b08da8333c30d884dea13d9a12fbce5aba4ddc9325413
( ) =

6    Message-Authenticator  0x5caf5e6d061691584c9093801846c341( ) =
6  Restoring &session-state( )
6    &session-state:Framed-MTU  ( ) = 994
6    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
6    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
6    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
6    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
6    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
6    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
6  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
6    authorize ( ) {
6  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 6 1492
6  eap: Continuing tunnel setup( )
6      eap   ok( ) [ ] =
6     ( ) } # authorize = ok
6  Found Auth-Type  EAP( ) =
6  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
6    Auth-Type EAP ( ) {
6  eap: Expiring EAP session with state 0x2a019a2d2f079761( )
6  eap: Finished EAP session with state 0x2a019a2d2f079761( )
6  eap: Previous EAP request found  state 0x2a019a2d2f079761, released from the list( ) for
6  eap: Peer sent packet with method EAP TLS 13( ) ( )
6  eap: Calling submodule eap_tls to process data( )
6  eap_tls: TLS  EAP Peer says that the final record size will be  bytes( ) ( ) 1734
6  eap_tls: TLS  EAP Expecting  fragments( ) ( ) 2
6  eap_tls: TLS  EAP Got first TLS fragment  bytes .  Peer says more fragments will follow( ) ( ) (1482 )
6  eap_tls: TLS  EAP ACKing fragment, the peer should send more data.( ) ( )
6  eap: Sending EAP Request code 1  ID  length ( ) ( ) 7 6
6  eap: EAP session adding &reply:State  0x2a019a2d2c069761( ) =
6      eap   handled( ) [ ] =
6     ( ) } # Auth-Type EAP = handled
6  Using Post-Auth-Type Challenge( )
6  Post-Auth-Type sub-section not found.  Ignoring.( )
6  session-state: Saving cached attributes( )
6    Framed-MTU  ( ) = 994
6    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
6    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
6    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"



6    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
6    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
6    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
6    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
6  Sent Access-Challenge Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 179 64
6    EAP-Message  0x010700060d00( ) =
6    Message-Authenticator  0x00000000000000000000000000000000( ) =
6    State  0x2a019a2d2c06976172f171851926dbf8( ) =
6  Finished request( )

Waking up in 9.8 seconds.
7  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 180 427
7    NAS-IP-Address  192.168.4.253( ) =
7    NAS-Port  ( ) = 50002
7    NAS-Port-Type  Ethernet( ) =
7    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
7    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
7    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
7    Service-Type  Framed-User( ) =
7    Framed-MTU  ( ) = 1500
7    State  0x2a019a2d2c06976172f171851926dbf8( ) =
7    EAP-Message  

0x020701020d00e20d42035e93afe672c521d5bb19182b78d8a423c7e3c4ce4c8b84b0445c61a4b95dbc602b073b22e94172f913a6ae52d8e814541d3e32b067c0528857bd7f7482f26336bae8a6a3bed36b1c4d5a188101285e04bdcfdea91d3e6016d13bafc21446dd121ca05a66bb5b2cfe3c1335acf1c0dff48052e5fb9dc05fce35a465556a4faeef953d05539b49336936c947f39f179117595b294c77841648c3c3f460b02836c75c90b6906beb80c8b0a5a23288bee6bc2e7261607fec5f1d5e6cbaf2d1415904d5f7b9c40314030300010116030300280000000000000000b61d36cfd271d2aad5f50759b78f5ac89ed66c64a97a1198361cdcfe735b2723
( ) =

7    Message-Authenticator  0xd2334d833b7fb6a9701c3c158f17a322( ) =
7  Restoring &session-state( )
7    &session-state:Framed-MTU  ( ) = 994
7    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
7    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
7    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
7    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
7    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
7    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
7  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
7    authorize ( ) {
7  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 7 258
7  eap: Continuing tunnel setup( )
7      eap   ok( ) [ ] =
7     ( ) } # authorize = ok
7  Found Auth-Type  EAP( ) =
7  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
7    Auth-Type EAP ( ) {
7  eap: Expiring EAP session with state 0x2a019a2d2c069761( )
7  eap: Finished EAP session with state 0x2a019a2d2c069761( )
7  eap: Previous EAP request found  state 0x2a019a2d2c069761, released from the list( ) for
7  eap: Peer sent packet with method EAP TLS 13( ) ( )
7  eap: Calling submodule eap_tls to process data( )
7  eap_tls: TLS  EAP Got final fragment  bytes( ) ( ) (252 )
7  eap_tls: TLS  EAP Done initial handshake( ) ( )
7  eap_tls: TLS  Handshake state - Server SSLv3/TLS write server ( ) ( ) done
7  eap_tls: TLS  recv TLS 1.2 Handshake, Certificate( ) ( )



7  eap_tls: TLS  recv TLS 1.2 Handshake, Certificate( ) ( )
7  eap_tls: TLS  Creating attributes from server certificate( ) ( )
7  eap_tls:   TLS-Cert-Serial :  ( ) = "5a42eea11d8d1528cd307d761cc682ec4da6aab3"
7  eap_tls:   TLS-Cert-Expiration :  ( ) = "20730829094146Z"
7  eap_tls:   TLS-Cert-Valid-Since :  ( ) = "230911094146Z"
7  eap_tls:   TLS-Cert-Subject :  ( ) = "/CN=RCDevs Root CA/OU=CA/O=RCDevs Support/C=LU"
7  eap_tls:   TLS-Cert-Issuer :  ( ) = "/CN=RCDevs Root CA/OU=CA/O=RCDevs Support/C=LU"
7  eap_tls:   TLS-Cert-Common-Name :  ( ) = "RCDevs Root CA"
7  eap_tls: TLS  Creating attributes from client certificate( ) ( )
7  eap_tls:   TLS-Client-Cert-Serial :  ( ) = "d9cd10deb891f2698216842aaae5cc53"
7  eap_tls:   TLS-Client-Cert-Expiration :  ( ) = "240917160009Z"
7  eap_tls:   TLS-Client-Cert-Valid-Since :  ( ) = "230918160009Z"
7  eap_tls:   TLS-Client-Cert-Subject :  ( ) = "/CN=DESKTOP-

A6MLXJO.support.rcdevs.com/description=CLIENT/O=RCDevs Support/organizationIdentifier=VATLU-
00000000"
7  eap_tls:   TLS-Client-Cert-Issuer :  ( ) = "/CN=RCDevs Root CA/OU=CA/O=RCDevs Support/C=LU"
7  eap_tls:   TLS-Client-Cert-Common-Name :  ( ) = "DESKTOP-A6MLXJO.support.rcdevs.com"
7  eap_tls:   TLS-Client-Cert-Subject-Alt-Name-Dns :  ( ) = "DESKTOP-A6MLXJO.support.rcdevs.com"
7  eap_tls:   TLS-Client-Cert-X509v3-Extended-Key-Usage +  ( ) = "TLS Web Client Authentication"
7  eap_tls:   TLS-Client-Cert-X509v3-Extended-Key-Usage-OID +  ( ) = "1.3.6.1.5.5.7.3.2"

Certificate chain -  cert s  untrusted1 ( )
TLS  untrusted certificate with depth 0  subject name /CN DESKTOP-

A6MLXJO.support.rcdevs.com/description CLIENT/O RCDevs Support/organizationIdentifier VATLU-
00000000

( ) [ ] =
= = =

7  eap_tls: Starting OCSP Request( )
OpenOTP PKI login succeeded
7  eap_tls: TLS  Handshake state - Server SSLv3/TLS read client certificate( ) ( )
7  eap_tls: TLS  recv TLS 1.2 Handshake, ClientKeyExchange( ) ( )
7  eap_tls: TLS  Handshake state - Server SSLv3/TLS read client key exchange( ) ( )
7  eap_tls: TLS  recv TLS 1.2 Handshake, CertificateVerify( ) ( )
7  eap_tls: TLS  Handshake state - Server SSLv3/TLS read certificate verify( ) ( )
7  eap_tls: TLS  Handshake state - Server SSLv3/TLS read change cipher spec( ) ( )
7  eap_tls: TLS  recv TLS 1.2 Handshake, Finished( ) ( )
7  eap_tls: TLS  Handshake state - Server SSLv3/TLS read finished( ) ( )
7  eap_tls: TLS  send TLS 1.2 ChangeCipherSpec( ) ( )
7  eap_tls: TLS  Handshake state - Server SSLv3/TLS write change cipher spec( ) ( )
7  eap_tls: TLS  send TLS 1.2 Handshake, Finished( ) ( )
7  eap_tls: TLS  Handshake state - Server SSLv3/TLS write finished( ) ( )
7  eap_tls: TLS  Handshake state - SSL negotiation finished successfully( ) ( )
7  eap_tls: TLS  Connection Established( ) ( )
7  eap_tls:   TLS-Session-Cipher-Suite  ( ) = "ECDHE-RSA-AES256-GCM-SHA384"
7  eap_tls:   TLS-Session-Version  ( ) = "TLS 1.2"
7  eap: Sending EAP Request code 1  ID  length ( ) ( ) 8 61
7  eap: EAP session adding &reply:State  0x2a019a2d2d099761( ) =
7      eap   handled( ) [ ] =
7     ( ) } # Auth-Type EAP = handled
7  Using Post-Auth-Type Challenge( )
7  Post-Auth-Type sub-section not found.  Ignoring.( )
7  session-state: Saving cached attributes( )
7    Framed-MTU  ( ) = 994
7    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"



7    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
7    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
7    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
7    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
7    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
7    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
7    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.2 Handshake, Certificate"
7    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.2 Handshake, ClientKeyExchange"
7    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.2 Handshake, CertificateVerify"
7    TLS-Session-Information  ( ) = "(TLS) recv TLS 1.2 Handshake, Finished"
7    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 ChangeCipherSpec"
7    TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Finished"
7    TLS-Session-Cipher-Suite  ( ) = "ECDHE-RSA-AES256-GCM-SHA384"
7    TLS-Session-Version  ( ) = "TLS 1.2"
7  Sent Access-Challenge Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 180 119
7    EAP-Message  

0x0108003d0d800000003314030300010116030300285fefc6a50b9e632a6910d6d47a124bfd5b7219f97268e13965946efe64a58b716614ef531d88b5d9
( ) =

7    Message-Authenticator  0x00000000000000000000000000000000( ) =
7    State  0x2a019a2d2d09976172f171851926dbf8( ) =
7  Finished request( )

Waking up in 9.8 seconds.
8  Received Access-Request Id  from 192.168.4.253:1812 to 192.168.4.21:1812 length ( ) 181 173
8    NAS-IP-Address  192.168.4.253( ) =
8    NAS-Port  ( ) = 50002
8    NAS-Port-Type  Ethernet( ) =
8    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
8    Called-Station-Id  ( ) = "00-21-1C-EA-37-42"
8    Calling-Station-Id  ( ) = "00-13-3B-A0-43-3E"
8    Service-Type  Framed-User( ) =
8    Framed-MTU  ( ) = 1500
8    State  0x2a019a2d2d09976172f171851926dbf8( ) =
8    EAP-Message  0x020800060d00( ) =
8    Message-Authenticator  0xee463f6371044aff2ccfedf9e4ee3d8d( ) =
8  Restoring &session-state( )
8    &session-state:Framed-MTU  ( ) = 994
8    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.3 Handshake, ClientHello"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHello"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Certificate"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerKeyExchange"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, CertificateRequest"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, ServerHelloDone"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.2 Handshake, Certificate"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.2 Handshake, ClientKeyExchange"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.2 Handshake, CertificateVerify"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) recv TLS 1.2 Handshake, Finished"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 ChangeCipherSpec"
8    &session-state:TLS-Session-Information  ( ) = "(TLS) send TLS 1.2 Handshake, Finished"
8    &session-state:TLS-Session-Cipher-Suite  ( ) = "ECDHE-RSA-AES256-GCM-SHA384"
8    &session-state:TLS-Session-Version  ( ) = "TLS 1.2"



You are now authenticated on your switch.

In macOS, open the downloaded user certificate to install it into the keychain. Input the password which protect the p12 bundle. 

8    &session-state:TLS-Session-Version  ( ) = "TLS 1.2"
8  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
8    authorize ( ) {
8  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 8 6
8  eap: Continuing tunnel setup( )
8      eap   ok( ) [ ] =
8     ( ) } # authorize = ok
8  Found Auth-Type  EAP( ) =
8  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
8    Auth-Type EAP ( ) {
8  eap: Expiring EAP session with state 0x2a019a2d2d099761( )
8  eap: Finished EAP session with state 0x2a019a2d2d099761( )
8  eap: Previous EAP request found  state 0x2a019a2d2d099761, released from the list( ) for
8  eap: Peer sent packet with method EAP TLS 13( ) ( )
8  eap: Calling submodule eap_tls to process data( )
8  eap_tls: TLS  Peer ACKed our handshake fragment.  handshake is finished( ) ( )
8  eap: Sending EAP Success code 3  ID  length ( ) ( ) 8 4
8  eap: Freeing handler( )
8      eap   ok( ) [ ] =
8     ( ) } # Auth-Type EAP = ok
8  Login OK: host/DESKTOP-A6MLXJO.support.rcdevs.com  from client any port  cli 00-13-3B-A0-

43-3E
( ) [ ] ( 50002

)
8  Sent Access-Accept Id  from 192.168.4.21:1812 to 192.168.4.253:1812 length ( ) 181 201
8    MS-MPPE-Recv-Key  0xec58342777317bb961c9ef3ff7f396221acaf7b1714eb5c1fd558878ae69267b( ) =
8    MS-MPPE-Send-Key  

0x00af4187cd99abeb6966d121d9b4c188e529ddcfe919bf4a420242cc58ab4b08
( ) =

8    EAP-Message  0x03080004( ) =
8    Message-Authenticator  0x00000000000000000000000000000000( ) =
8    User-Name  ( ) = "host/DESKTOP-A6MLXJO.support.rcdevs.com"
8  Finished request( )

Waking up in 9.8 seconds.

4.2 macOS / iOS

4.2.1 User certificate based authentication



Once my certificate has been issued and imported in my keychain, I can use it for EAP-TLS authentication. Found below, the

description of the certificate that I will use for that test authentication :

I click to connect on the Wi-Fi I configured in EAP-TLS and prompted to select the mode and the identity I want to use for the

login. I choose EAP-TLS (else EAP-TTLS is involved) and the Identity (Roland)



Then click Connect and few seconds after, you are connected to the Wi-Fi. See below, the EAP-TLS debug logs from Radius

Bridge:

0  Received Access-Request Id  from 192.168.4.250:32768 to 192.168.4.20:1812 length ( ) 0 141
0    User-Name  ( ) = "Default\\roland"
0    NAS-IP-Address  192.168.4.250( ) =
0    Called-Station-Id  ( ) = "586d8fa0308d"
0    Calling-Station-Id  ( ) = "f40f2423e0c7"
0    NAS-Identifier  ( ) = "586d8fa0308d"
0    NAS-Port  ( ) = 4
0    Framed-MTU  ( ) = 1400
0    NAS-Port-Type  Wireless-802.11( ) =
0    EAP-Message  0x020000130144656661756c745c726f6c616e64( ) =
0    Message-Authenticator  0x8cb30e6eb5c035d76b6a48ea62d0eba7( ) =
0  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
0    authorize ( ) {
0  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 0 19
0  eap: Continuing tunnel setup( )
0      eap   ok( ) [ ] =
0     ( ) } # authorize = ok
0  Found Auth-Type  EAP( ) =
0  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
0    Auth-Type EAP ( ) {
0  eap: Peer sent packet with method EAP Identity 1( ) ( )
0  eap: Calling submodule eap_ttls to process data( )
0  eap_ttls: TLS  Initiating new session( ) ( )
0  eap: Sending EAP Request code 1  ID  length ( ) ( ) 1 6
0  eap: EAP session adding &reply:State  0xd85aceebd85bdb18( ) =
0      eap   handled( ) [ ] =



0      eap   handled( ) [ ] =
0     ( ) } # Auth-Type EAP = handled
0  Using Post-Auth-Type Challenge( )
0  Post-Auth-Type sub-section not found.  Ignoring.( )
0  session-state: Saving cached attributes( )
0    Framed-MTU  ( ) = 994
0  Sent Access-Challenge Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
0    EAP-Message  0x010100061520( ) =
0    Message-Authenticator  0x00000000000000000000000000000000( ) =
0    State  0xd85aceebd85bdb18ad985fadddd9ba17( ) =
0  Finished request( )

Waking up in 9.9 seconds.
0  Cleaning up request packet ID  with timestamp +742( ) 0
1  Received Access-Request Id  from 192.168.4.250:32768 to 192.168.4.20:1812 length ( ) 0 146
1    User-Name  ( ) = "Default\\roland"
1    NAS-IP-Address  192.168.4.250( ) =
1    Called-Station-Id  ( ) = "586d8fa0308d"
1    Calling-Station-Id  ( ) = "f40f2423e0c7"
1    NAS-Identifier  ( ) = "586d8fa0308d"
1    NAS-Port  ( ) = 4
1    Framed-MTU  ( ) = 1400
1    State  0xd85aceebd85bdb18ad985fadddd9ba17( ) =
1    NAS-Port-Type  Wireless-802.11( ) =
1    EAP-Message  0x02010006030d( ) =
1    Message-Authenticator  0x73cf20651a33a0e2a9bbb615311673c7( ) =
1  Restoring &session-state( )
1    &session-state:Framed-MTU  ( ) = 994
1  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
1    authorize ( ) {
1  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 1 6
1  eap: Continuing tunnel setup( )
1      eap   ok( ) [ ] =
1     ( ) } # authorize = ok
1  Found Auth-Type  EAP( ) =
1  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
1    Auth-Type EAP ( ) {
1  eap: Expiring EAP session with state 0xd85aceebd85bdb18( )
1  eap: Finished EAP session with state 0xd85aceebd85bdb18( )
1  eap: Previous EAP request found  state 0xd85aceebd85bdb18, released from the list( ) for
1  eap: Peer sent packet with method EAP NAK 3( ) ( )
1  eap: Found mutually acceptable type TLS 13( ) ( )
1  eap: Calling submodule eap_tls to process data( )
1  eap_tls: TLS  Initiating new session( ) ( )
1  eap_tls: TLS  Setting verify mode to require certificate from client( ) ( )
1  eap: Sending EAP Request code 1  ID  length ( ) ( ) 2 6
1  eap: EAP session adding &reply:State  0xd85aceebd958c318( ) =
1      eap   handled( ) [ ] =
1     ( ) } # Auth-Type EAP = handled
1  Using Post-Auth-Type Challenge( )
1  Post-Auth-Type sub-section not found.  Ignoring.( )
1  session-state: Saving cached attributes( )



1  session-state: Saving cached attributes( )
1    Framed-MTU  ( ) = 994
1  Sent Access-Challenge Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
1    EAP-Message  0x010200060d20( ) =
1    Message-Authenticator  0x00000000000000000000000000000000( ) =
1    State  0xd85aceebd958c318ad985fadddd9ba17( ) =
1  Finished request( )

Waking up in 9.9 seconds.
1  Cleaning up request packet ID  with timestamp +742( ) 0
2  Received Access-Request Id  from 192.168.4.250:32768 to 192.168.4.20:1812 length ( ) 0 301
2    User-Name  ( ) = "Default\\roland"
2    NAS-IP-Address  192.168.4.250( ) =
2    Called-Station-Id  ( ) = "586d8fa0308d"
2    Calling-Station-Id  ( ) = "f40f2423e0c7"
2    NAS-Identifier  ( ) = "586d8fa0308d"
2    NAS-Port  ( ) = 4
2    Framed-MTU  ( ) = 1400
2    State  0xd85aceebd958c318ad985fadddd9ba17( ) =
2    NAS-Port-Type  Wireless-802.11( ) =
2    EAP-Message  

0x020200a10d800000009716030100920100008e030360e5e1d43c1356e4e327db12aa19c43cbf67a94d1177b40bf2daf0bd0cabe51d00002c00ffc02cc02bc024c023c00ac009c008c030c02fc028c027c014c013c012009d009c003d003c0035002f000a01000039000a00080006001700180019000b00020100000d00120010040102010501060104030203050306030005000501000000000012000000170000
( ) =

2    Message-Authenticator  0xde2398f23b590bdec148204f601493a4( ) =
2  Restoring &session-state( )
2    &session-state:Framed-MTU  ( ) = 994
2  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
2    authorize ( ) {
2  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 2 161
2  eap: Continuing tunnel setup( )
2      eap   ok( ) [ ] =
2     ( ) } # authorize = ok
2  Found Auth-Type  EAP( ) =
2  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
2    Auth-Type EAP ( ) {
2  eap: Expiring EAP session with state 0xd85aceebd958c318( )
2  eap: Finished EAP session with state 0xd85aceebd958c318( )
2  eap: Previous EAP request found  state 0xd85aceebd958c318, released from the list( ) for
2  eap: Peer sent packet with method EAP TLS 13( ) ( )
2  eap: Calling submodule eap_tls to process data( )
2  eap_tls: TLS  EAP Peer says that the final record size will be  bytes( ) ( ) 151
2  eap_tls: TLS  EAP Got all data  bytes( ) ( ) (151 )
2  eap_tls: TLS  Handshake state - before SSL initialization( ) ( )
2  eap_tls: TLS  Handshake state - Server before SSL initialization( ) ( )
2  eap_tls: TLS  Handshake state - Server before SSL initialization( ) ( )
2  eap_tls: TLS  recv TLS 1.3 Handshake, ClientHello ( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS read client hello( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, ServerHello ( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write server hello( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, Certificate ( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write certificate( ) ( )



2  eap_tls: TLS  send TLS 1.2 Handshake, ServerKeyExchange ( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write key exchange( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, CertificateRequest ( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write certificate request( ) ( )
2  eap_tls: TLS  send TLS 1.2 Handshake, ServerHelloDone ( ) ( )
2  eap_tls: TLS  Handshake state - Server SSLv3/TLS write server ( ) ( ) done
2  eap_tls: TLS  Server : Need to read more data: SSLv3/TLS write server ( ) ( ) done
2  eap_tls: TLS  In Handshake Phase( ) ( )
2  eap: Sending EAP Request code 1  ID  length ( ) ( ) 3 1004
2  eap: EAP session adding &reply:State  0xd85aceebda59c318( ) =
2      eap   handled( ) [ ] =
2     ( ) } # Auth-Type EAP = handled
2  Using Post-Auth-Type Challenge( )
2  Post-Auth-Type sub-section not found.  Ignoring.( )
2  session-state: Saving cached attributes( )
2    Framed-MTU  ( ) = 994
2  Sent Access-Challenge Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
2    EAP-Message  

0x010303ec0dc0000008ee160303003d0200003903033b6d140fdc958c73e51eb3c0cfbaea24f5211392e6b896fd4c1ecd848d1faea100c030000011ff01000100000b0004030001020017000016030306780b00067400067100031f3082031b30820203a003020102020124300d06092a864886f70d01010b050030343119301706035504030c1057656241444d2043412023323030333431173015060355040a0c0e537570706f727420524344657673301e170d3231303730363134333532335a170d3331303730343134333532335a30363123302106035504030c1a77656261646d312e737570706f72742e7263646576732e636f6d310f300d060355040d0c0653455256455230820122300d06092a864886f70d01010105000382010f003082010a0282010100d8eef68cdb1de59fde76ca30c1fe481978f1827071b3bbcc1b79ed1ab6226af1ae161ec04fe3f859a70f1111ef4373e7a184c003b2ceaec3ba75cfea74937589a2a954e554184a38c9f930165894
( ) =

2    Message-Authenticator  0x00000000000000000000000000000000( ) =
2    State  0xd85aceebda59c318ad985fadddd9ba17( ) =
2  Finished request( )

Waking up in 9.9 seconds.
2  Cleaning up request packet ID  with timestamp +742( ) 0
3  Received Access-Request Id  from 192.168.4.250:32768 to 192.168.4.20:1812 length ( ) 0 146
3    User-Name  ( ) = "Default\\roland"
3    NAS-IP-Address  192.168.4.250( ) =
3    Called-Station-Id  ( ) = "586d8fa0308d"
3    Calling-Station-Id  ( ) = "f40f2423e0c7"
3    NAS-Identifier  ( ) = "586d8fa0308d"
3    NAS-Port  ( ) = 4
3    Framed-MTU  ( ) = 1400
3    State  0xd85aceebda59c318ad985fadddd9ba17( ) =
3    NAS-Port-Type  Wireless-802.11( ) =
3    EAP-Message  0x020300060d00( ) =
3    Message-Authenticator  0x645a819abd55681138a46984c41a7c9f( ) =
3  Restoring &session-state( )
3    &session-state:Framed-MTU  ( ) = 994
3  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
3    authorize ( ) {
3  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 3 6
3  eap: Continuing tunnel setup( )
3      eap   ok( ) [ ] =
3     ( ) } # authorize = ok
3  Found Auth-Type  EAP( ) =
3  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
3    Auth-Type EAP ( ) {
3  eap: Expiring EAP session with state 0xd85aceebda59c318( )
3  eap: Finished EAP session with state 0xd85aceebda59c318( )



3  eap: Finished EAP session with state 0xd85aceebda59c318( )
3  eap: Previous EAP request found  state 0xd85aceebda59c318, released from the list( ) for
3  eap: Peer sent packet with method EAP TLS 13( ) ( )
3  eap: Calling submodule eap_tls to process data( )
3  eap_tls: TLS  Peer ACKed our handshake fragment( ) ( )
3  eap: Sending EAP Request code 1  ID  length ( ) ( ) 4 1004
3  eap: EAP session adding &reply:State  0xd85aceebdb5ec318( ) =
3      eap   handled( ) [ ] =
3     ( ) } # Auth-Type EAP = handled
3  Using Post-Auth-Type Challenge( )
3  Post-Auth-Type sub-section not found.  Ignoring.( )
3  session-state: Saving cached attributes( )
3    Framed-MTU  ( ) = 994
3  Sent Access-Challenge Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
3    EAP-Message  

0x010403ec0dc0000008ee3432363133303134395a180f32303731303431343133303134395a30343119301706035504030c1057656241444d2043412023323030333431173015060355040a0c0e537570706f72742052434465767330820122300d06092a864886f70d01010105000382010f003082010a0282010100bc70ce477f16c6d1d8de5aa815a65b0c056a1360ebe515c71ef751cb02873d32390ede8c20209af0c0631939715e0983a255716a6e5e619a46f0a84aa44d50ce6e4f6d1af231e8a13361a5ac19f5366d684c841728443dddb7daf530d310e7846ad1d7e014db486f06e54049167ee0da80644122c345405048d94954b59e9ba0755a415ddc1ce8e560d1e9f960442994e0008fed73122d18a4c81c8f2159d524bfe90e3412c1f29b957eb5e39fe97de86516a4b9ba8a4e0c754a759825517d848191508c76cb0f046ddc13660f28e7ae1bdb93b34ad1fd2d0043356f8cd4bf2937405ba1cae9207406a01c940ae7e0f48cbeeb75cdb7e2f7a30701
( ) =

3    Message-Authenticator  0x00000000000000000000000000000000( ) =
3    State  0xd85aceebdb5ec318ad985fadddd9ba17( ) =
3  Finished request( )

Waking up in 9.9 seconds.
3  Cleaning up request packet ID  with timestamp +742( ) 0
4  Received Access-Request Id  from 192.168.4.250:32768 to 192.168.4.20:1812 length ( ) 0 146
4    User-Name  ( ) = "Default\\roland"
4    NAS-IP-Address  192.168.4.250( ) =
4    Called-Station-Id  ( ) = "586d8fa0308d"
4    Calling-Station-Id  ( ) = "f40f2423e0c7"
4    NAS-Identifier  ( ) = "586d8fa0308d"
4    NAS-Port  ( ) = 4
4    Framed-MTU  ( ) = 1400
4    State  0xd85aceebdb5ec318ad985fadddd9ba17( ) =
4    NAS-Port-Type  Wireless-802.11( ) =
4    EAP-Message  0x020400060d00( ) =
4    Message-Authenticator  0x32dbe7446a81c8eb2cb17ef766684480( ) =
4  Restoring &session-state( )
4    &session-state:Framed-MTU  ( ) = 994
4  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
4    authorize ( ) {
4  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 4 6
4  eap: Continuing tunnel setup( )
4      eap   ok( ) [ ] =
4     ( ) } # authorize = ok
4  Found Auth-Type  EAP( ) =
4  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
4    Auth-Type EAP ( ) {
4  eap: Expiring EAP session with state 0xd85aceebdb5ec318( )
4  eap: Finished EAP session with state 0xd85aceebdb5ec318( )
4  eap: Previous EAP request found  state 0xd85aceebdb5ec318, released from the list( ) for
4  eap: Peer sent packet with method EAP TLS 13( ) ( )
4  eap: Calling submodule eap_tls to process data( )



4  eap_tls: TLS  Peer ACKed our handshake fragment( ) ( )
4  eap: Sending EAP Request code 1  ID  length ( ) ( ) 5 308
4  eap: EAP session adding &reply:State  0xd85aceebdc5fc318( ) =
4      eap   handled( ) [ ] =
4     ( ) } # Auth-Type EAP = handled
4  Using Post-Auth-Type Challenge( )
4  Post-Auth-Type sub-section not found.  Ignoring.( )
4  session-state: Saving cached attributes( )
4    Framed-MTU  ( ) = 994
4  Sent Access-Challenge Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
4    EAP-Message  

0x010501340d80000008eeee8e2601ae3f80448a3fcc7735c5a67670614d68290275e0b7762b5af9b6d3d2afda3b76173b775872e5338c7a7950446eb9c0f5de58b727a66d22d64cc2ebea3c28b876fd197094340b895a1016030300cf0d0000cb03010240002e040305030603080708080809080a080b0804080508060401050106010303020303010201030202020402050206020095003630343119301706035504030c1057656241444d2043412023323030333431173015060355040a0c0e537570706f727420524344657673005b305931133011060a0992268993f22c6401191603636f6d31163014060a0992268993f22c640119160672636465767331173015060a0992268993f22c6401191607737570706f72743111300f06035504031308535550434141443216030300040e000000
( ) =

4    Message-Authenticator  0x00000000000000000000000000000000( ) =
4    State  0xd85aceebdc5fc318ad985fadddd9ba17( ) =
4  Finished request( )

Waking up in 9.9 seconds.
4  Cleaning up request packet ID  with timestamp +742( ) 0
5  Received Access-Request Id  from 192.168.4.250:32768 to 192.168.4.20:1812 length ( ) 0 1426
5    User-Name  ( ) = "Default\\roland"
5    NAS-IP-Address  192.168.4.250( ) =
5    Called-Station-Id  ( ) = "586d8fa0308d"
5    Calling-Station-Id  ( ) = "f40f2423e0c7"
5    NAS-Identifier  ( ) = "586d8fa0308d"
5    NAS-Port  ( ) = 4
5    Framed-MTU  ( ) = 1400
5    State  0xd85aceebdc5fc318ad985fadddd9ba17( ) =
5    NAS-Port-Type  Wireless-802.11( ) =
5    EAP-Message  

0x020504fc0dc0000007f316030306630b00065f00065c00030a30820306308201eea003020102020125300d06092a864886f70d01010b050030343119301706035504030c1057656241444d2043412023323030333431173015060355040a0c0e537570706f727420524344657673301e170d3231303730373137303933355a170d3232303730373137303933355a30593117301506035504030c0e44656661756c745c726f6c616e6431163014060a0992268993f22c6401010c06726f6c616e6431173015060a0992268993f22c640119160744656661756c74310d300b060355040d0c045553455230820122300d06092a864886f70d01010105000382010f003082010a0282010100efc92e7054974305d1ce7d011f5bd66b7abf1561e24cf2c5b744f744bdcd03ed3989b4f73d10bd6ccf7efae3b90f5522ea48e444914f3a7bfbbea91c5fcb47c1a2c7ca97d18ebe2e82603277c19caef42fc89c188d7e65a06f5ce7f1cb95ab327ade9a4a073302b4f0d1922613
( ) =

5    Message-Authenticator  0x0333c9763187fe93e3a60ef5a6432197( ) =
5  Restoring &session-state( )
5    &session-state:Framed-MTU  ( ) = 994
5  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
5    authorize ( ) {
5  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 5 1276
5  eap: Continuing tunnel setup( )
5      eap   ok( ) [ ] =
5     ( ) } # authorize = ok
5  Found Auth-Type  EAP( ) =
5  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
5    Auth-Type EAP ( ) {
5  eap: Expiring EAP session with state 0xd85aceebdc5fc318( )
5  eap: Finished EAP session with state 0xd85aceebdc5fc318( )
5  eap: Previous EAP request found  state 0xd85aceebdc5fc318, released from the list( ) for
5  eap: Peer sent packet with method EAP TLS 13( ) ( )
5  eap: Calling submodule eap_tls to process data( )
5  eap_tls: TLS  EAP Peer says that the final record size will be  bytes( ) ( ) 2035
5  eap_tls: TLS  EAP Expecting  fragments( ) ( ) 2



5  eap_tls: TLS  EAP Expecting  fragments( ) ( ) 2
5  eap_tls: TLS  EAP Got first TLS fragment  bytes .  Peer says more fragments will follow( ) ( ) (1266 )
5  eap_tls: TLS  EAP ACKing fragment, the peer should send more data.( ) ( )
5  eap: Sending EAP Request code 1  ID  length ( ) ( ) 6 6
5  eap: EAP session adding &reply:State  0xd85aceebdd5cc318( ) =
5      eap   handled( ) [ ] =
5     ( ) } # Auth-Type EAP = handled
5  Using Post-Auth-Type Challenge( )
5  Post-Auth-Type sub-section not found.  Ignoring.( )
5  session-state: Saving cached attributes( )
5    Framed-MTU  ( ) = 994
5  Sent Access-Challenge Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
5    EAP-Message  0x010600060d00( ) =
5    Message-Authenticator  0x00000000000000000000000000000000( ) =
5    State  0xd85aceebdd5cc318ad985fadddd9ba17( ) =
5  Finished request( )

Waking up in 9.9 seconds.
5  Cleaning up request packet ID  with timestamp +749( ) 0
6  Received Access-Request Id  from 192.168.4.250:32768 to 192.168.4.20:1812 length ( ) 0 921
6    User-Name  ( ) = "Default\\roland"
6    NAS-IP-Address  192.168.4.250( ) =
6    Called-Station-Id  ( ) = "586d8fa0308d"
6    Calling-Station-Id  ( ) = "f40f2423e0c7"
6    NAS-Identifier  ( ) = "586d8fa0308d"
6    NAS-Port  ( ) = 4
6    Framed-MTU  ( ) = 1400
6    State  0xd85aceebdd5cc318ad985fadddd9ba17( ) =
6    NAS-Port-Type  Wireless-802.11( ) =
6    EAP-Message  

0x020603070d00b7e2f7a30701ef63fcc94b0203010001a350304e301d0603551d0e0416041428a7dc1346e132c0cc1421bd7726117efe230517301f0603551d2304183016801428a7dc1346e132c0cc1421bd7726117efe230517300c0603551d13040530030101ff300d06092a864886f70d01010b050003820101007e332d89c217211c22fd1312ff4e73a2360b93c31038e765b8c065ca820628721642c2ac8ad9b2a5021f6f921563334fd620770013138e53a09dc6e934d71de4948f1b79fbc78dd18a2b99fb9f18d66c5bce44e6128f06deb5412f08a5de70077a9100d0fce9b0881114f97eaed6b8eab2127b1a0c7973c14e292cc9cda9657c9a1c16455537ee77c23a81d500dda5cba5c80795f68a4866554c9df4262a4d6432a7f3d0055ac94a8c9c59a23ff4dd8a2f7812fd5f3910686a89171882549c9f058518a09cf86d59768f4ed48f6800ef97b299b1f5f25d8373d6547ad3a07beabd1aecb62c4888c976d6741dff0d63693aa1b53d928c96515fa738
( ) =

6    Message-Authenticator  0x3a15445e85a724b07397c16d6dcda6bd( ) =
6  Restoring &session-state( )
6    &session-state:Framed-MTU  ( ) = 994
6  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
6    authorize ( ) {
6  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 6 775
6  eap: Continuing tunnel setup( )
6      eap   ok( ) [ ] =
6     ( ) } # authorize = ok
6  Found Auth-Type  EAP( ) =
6  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
6    Auth-Type EAP ( ) {
6  eap: Expiring EAP session with state 0xd85aceebdd5cc318( )
6  eap: Finished EAP session with state 0xd85aceebdd5cc318( )
6  eap: Previous EAP request found  state 0xd85aceebdd5cc318, released from the list( ) for
6  eap: Peer sent packet with method EAP TLS 13( ) ( )
6  eap: Calling submodule eap_tls to process data( )
6  eap_tls: TLS  EAP Got final fragment  bytes( ) ( ) (769 )
6  eap_tls: TLS  EAP Done initial handshake( ) ( )



6  eap_tls: TLS  Handshake state - Server SSLv3/TLS write server ( ) ( ) done
6  eap_tls: TLS  recv TLS 1.2 Handshake, Certificate ( ) ( )
6  eap_tls: TLS  Creating attributes from server certificate( ) ( )
6  eap_tls:   TLS-Cert-Serial :  ( ) = "0ad37ee93fdbfe67f1115f96850d4495c8da6def"
6  eap_tls:   TLS-Cert-Expiration :  ( ) = "20710414130149Z"
6  eap_tls:   TLS-Cert-Subject :  ( ) = "/CN=WebADM CA #20034/O=Support RCDevs"
6  eap_tls:   TLS-Cert-Issuer :  ( ) = "/CN=WebADM CA #20034/O=Support RCDevs"
6  eap_tls:   TLS-Cert-Common-Name :  ( ) = "WebADM CA #20034"
6  eap_tls: TLS  Creating attributes from client certificate( ) ( )
6  eap_tls:   TLS-Client-Cert-Serial :  ( ) = "25"
6  eap_tls:   TLS-Client-Cert-Expiration :  ( ) = "220707170935Z"
6  eap_tls:   TLS-Client-Cert-Subject :  ( ) = "/CN=Default\roland/UID=roland/DC=Default/description=USER"
6  eap_tls:   TLS-Client-Cert-Issuer :  ( ) = "/CN=WebADM CA #20034/O=Support RCDevs"
6  eap_tls:   TLS-Client-Cert-Common-Name :  ( ) = "Default\roland"
6  eap_tls: Starting OCSP Request( )
6  eap_tls: ocsp:  Using responder URL ( ) "https://192.168.4.20:443/ocsp/?

nosig=1&host=192.168.4.250&client=586d8fa0308d&source="
 This Update: Jul   17:18:19  GMT7 2021
6  eap_tls: ocsp: Cert status: good( )
6  eap_tls: ocsp: Certificate is valid( )
6  eap_tls: TLS  Handshake state - Server SSLv3/TLS read client certificate( ) ( )
6  eap_tls: TLS  recv TLS 1.2 Handshake, ClientKeyExchange ( ) ( )
6  eap_tls: TLS  Handshake state - Server SSLv3/TLS read client key exchange( ) ( )
6  eap_tls: TLS  recv TLS 1.2 Handshake, CertificateVerify ( ) ( )
6  eap_tls: TLS  Handshake state - Server SSLv3/TLS read certificate verify( ) ( )
6  eap_tls: TLS  Handshake state - Server SSLv3/TLS read change cipher spec( ) ( )
6  eap_tls: TLS  recv TLS 1.2 Handshake, Finished ( ) ( )
6  eap_tls: TLS  Handshake state - Server SSLv3/TLS read finished( ) ( )
6  eap_tls: TLS  send TLS 1.2 ChangeCipherSpec ( ) ( )
6  eap_tls: TLS  Handshake state - Server SSLv3/TLS write change cipher spec( ) ( )
6  eap_tls: TLS  send TLS 1.2 Handshake, Finished ( ) ( )
6  eap_tls: TLS  Handshake state - Server SSLv3/TLS write finished( ) ( )
6  eap_tls: TLS  Handshake state - SSL negotiation finished successfully( ) ( )
6  eap_tls: TLS  Connection Established( ) ( )
6  eap: Sending EAP Request code 1  ID  length ( ) ( ) 7 61
6  eap: EAP session adding &reply:State  0xd85aceebde5dc318( ) =
6      eap   handled( ) [ ] =
6     ( ) } # Auth-Type EAP = handled
6  Using Post-Auth-Type Challenge( )
6  Post-Auth-Type sub-section not found.  Ignoring.( )
6  session-state: Saving cached attributes( )
6    Framed-MTU  ( ) = 994
6  Sent Access-Challenge Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
6    EAP-Message  

0x0107003d0d80000000331403030001011603030028f3c248d2faf970c644015b2a2588a7eea20b7925835af5ff921dd609853023c386d99375f4faa7ca
( ) =

6    Message-Authenticator  0x00000000000000000000000000000000( ) =
6    State  0xd85aceebde5dc318ad985fadddd9ba17( ) =
6  Finished request( )

Waking up in 9.9 seconds.



Waking up in 9.9 seconds.
6  Cleaning up request packet ID  with timestamp +749( ) 0
7  Received Access-Request Id  from 192.168.4.250:32768 to 192.168.4.20:1812 length ( ) 0 146
7    User-Name  ( ) = "Default\\roland"
7    NAS-IP-Address  192.168.4.250( ) =
7    Called-Station-Id  ( ) = "586d8fa0308d"
7    Calling-Station-Id  ( ) = "f40f2423e0c7"
7    NAS-Identifier  ( ) = "586d8fa0308d"
7    NAS-Port  ( ) = 4
7    Framed-MTU  ( ) = 1400
7    State  0xd85aceebde5dc318ad985fadddd9ba17( ) =
7    NAS-Port-Type  Wireless-802.11( ) =
7    EAP-Message  0x020700060d00( ) =
7    Message-Authenticator  0xa5d3c08d8cc6b9f3daf805483b0c33af( ) =
7  Restoring &session-state( )
7    &session-state:Framed-MTU  ( ) = 994
7  ( ) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
7    authorize ( ) {
7  eap: Peer sent EAP Response code 2  ID  length ( ) ( ) 7 6
7  eap: Continuing tunnel setup( )
7      eap   ok( ) [ ] =
7     ( ) } # authorize = ok
7  Found Auth-Type  EAP( ) =
7  ( ) # Executing group from file /opt/radiusd/lib/radiusd.ini
7    Auth-Type EAP ( ) {
7  eap: Expiring EAP session with state 0xd85aceebde5dc318( )
7  eap: Finished EAP session with state 0xd85aceebde5dc318( )
7  eap: Previous EAP request found  state 0xd85aceebde5dc318, released from the list( ) for
7  eap: Peer sent packet with method EAP TLS 13( ) ( )
7  eap: Calling submodule eap_tls to process data( )
7  eap_tls: TLS  Peer ACKed our handshake fragment.  handshake is finished( ) ( )

Detected WebADM user certificate calling OpenOTP( )
USER
OpenOTP authentication succeeded
7  eap: Sending EAP Success code 3  ID  length ( ) ( ) 7 4
7  eap: Freeing handler( )
7      eap   ok( ) [ ] =
7     ( ) } # Auth-Type EAP = ok
7  Login OK: Default oland  from client any port  cli f40f2423e0c7( ) [ \r ] ( 4 )
7  Sent Access-Accept Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
7    Reply-Message :  ( ) = "Authentication success"
7    MS-MPPE-Recv-Key  

0xe0d02a4251196b64032224dd80309d68f240db9a2f038e3b70e878f447c16f19
( ) =

7    MS-MPPE-Send-Key  0x13c4f8ae48ca72317a09c42288f80f0ec0cb3f491a0731bb95cf3db9ceda467f( ) =
7    EAP-Message  0x03070004( ) =
7    Message-Authenticator  0x00000000000000000000000000000000( ) =
7    User-Name  ( ) = "Default\\roland"
7  Finished request( )

Waking up in 9.9 seconds.



You can see at the end of the debug logs the following which confirm the authentication has been done successfully.

You can copy the p12 bundle previously created on your macOS machine. The CA certificate of WebADM will be needed during for

the connection setup and can be downloaded at https://webadm_server_address/cacerthttps://webadm_server_address/cacert . You must add the CA

certificate of WebADM into the System KeychainSystem Keychain  and the p12 bundle into the System KeychainSystem Keychain  in order to be shared

between the different users available on the same machine. 

7  Login OK: Default oland  from client any port  cli f40f2423e0c7( ) [ \r ] ( 4 )
7  Sent Access-Accept Id  from 192.168.4.20:1812 to 192.168.4.250:32768 length ( ) 0 0
7    Reply-Message :  ( ) = "Authentication success"
7    MS-MPPE-Recv-Key  

0xe0d02a4251196b64032224dd80309d68f240db9a2f038e3b70e878f447c16f19
( ) =

7    MS-MPPE-Send-Key  0x13c4f8ae48ca72317a09c42288f80f0ec0cb3f491a0731bb95cf3db9ceda467f( ) =
7    EAP-Message  0x03070004( ) =
7    Message-Authenticator  0x00000000000000000000000000000000( ) =
7    User-Name  ( ) = "Default\\roland"

4.2.2 Device certificate based authentication



Provide the password which protect the p12 bundle and click Ok:

When you will connect the ethernet cable to your OSX device, the system will prompt you to choose the client certificate. Select

the client certificate previously imported. Keep account name and password empty as we are not authenticating the user but the

client machine and then press OkOk : 



You may be prompted to trust the certificate of the authentication server as below:

Press ContinueContinue  and provide the OSX credentials to access the keychain.



Android has native support of the required protocols, although this might depend on the specific version of Android. First,

transfer the downloaded certificate to your phone, and then configure the wireless network. 

4.3 Android

4.3.1 User certificate based authentication



Most Linux clients also have native support and the connection can be configured graphically. Below is a screenshot of Ubuntu

18.04 Network Manager. 

4.4 Linux

4.4.1 User certificate based authentication



You can copy the p12 bundle previously created on your Linux machine. The CA certificate of WebADM will be needed during the

interface setup and can be downloaded at https://webadm_server_address/cacerthttps://webadm_server_address/cacert .

Navigate to the Network configuration of your Linux machine, then edit the Ethernet interface settings.

Configure it like below:

4.4.2 Device certificate based authentication



First, enable the 802.1X security802.1X security  setting. The IdentityIdentity  and DomainDomain  settings are optional as information are

retrieved from the client certificate that it is going to be used to establish the authentication and the connection. Configure the

CA certificate setting with the CA certificate of your WebADM. Configure the User certificateUser certificate  and the Private keyPrivate key

fields to the certificate p12 bundle previously generated and copied on your Linux machine. Then, provide the p12 password in

the Key passwordKey password  field.

You can click ApplyApply  button.

On the DetailsDetails  tab, you can enable the setting Make available to other usersMake available to other users  if you want to share the network

configuration with other users of that computer:









You should be connected to your network after a successfull EAP-TLS authentication:

OpenOTP provides SOAP API methods that can be integrated wherever you want to authenticate users through user certificate.

For OpenOTP to be able to validate the user certificates, you need to respect the following prerequisites:

The certificate must be stored on the user account in the userCertificate attribute,

The account must be activated in WebADM,

The certificate can be issued by WebADM or another PKI, as soon as the certificate is stored on the user account, it can be used

to authenticate the user.

Below, the description of the 2 methods which can be used for this purpose.

5. Certificate-based authentication for custom integrations (API integrations)



In that documentation, I use the SOAPUI tool to test a certificate-based authentication. What is performed by SOAPUI must be

implemented on the client system you want to enable certificate-based authentication. For e.g, if you want to enable certificate-

based authentication on your intranet, you must implement SOAP calls on your intranet web server and configure the login page

of your intranet website to ask the users for their certificate. When the user will access the intranet through his web browser, he

will have to provide the certificate issued for this purpose. The certificate will be passed through the usersʼ web browser to your

website and your website must fill in the user certificate into the certificatecertificate  parameter of the SOAP API PKI authentication

method. The certificate must be filled to the SOAP API in PEM format.

<!-- PKI Authentication Methods -->

 <message name="openotpPKILoginRequest">
      <part name="certificate" type="xsd:string"/>
      <part name="client" type="xsd:string"/>
      <part name="source" type="xsd:string"/>
      <part name="settings" type="xsd:string"/>
      <part name="options" type="xsd:string"/>
      <part name="virtual" type="xsd:string"/>
</message>

 <message name="openotpPKILoginResponse">
      <part name="code" type="xsd:integer"/>
      <part name="error" type="xsd:string"/>
      <part name="message" type="xsd:string"/>
      <part name="username" type="xsd:string"/>
      <part name="domain" type="xsd:string"/>
      <part name="data" type="xsd:string"/>
</message>



Below, the OpenOTP logs for that authentication.

As you can see in the logs, the authentication is a success. If I remove the certificate from the user account, then the

authentication is immediately rejected.

2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  New openotpPKILogin SOAP request[ ] [ ] [ ]
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  > Certificate: Default alery 46[ ] [ ] [ ] \v ( )
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  > Client ID: PKITestPolicy[ ] [ ] [ ]
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  > Source IP: 192.168.4.200[ ] [ ] [ ]
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  Registered openotpPKILogin request[ ] [ ] [ ]
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  Resolved LDAP user: 

CN valery,OU SUPAdmins,DC support,DC rcdevs,DC com cached
[ ] [ ] [ ]

= = = = = ( )
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  Resolved source location: US[ ] [ ] [ ]
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  Started transaction lock  user[ ] [ ] [ ] for
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  Found user fullname: valery[ ] [ ] [ ]
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  Found  user settings: EnableLogin Yes[ ] [ ] [ ] 10 =
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  Updated user data[ ] [ ] [ ]
2021-07-23 11:29:29  10.2.3.6:58127  OpenOTP:JXU40VZX  Sent login success response[ ] [ ] [ ]



For custom implementation of computer certificate based authentication with the OpenOTPPKILogin method, you must pass the

MACHINEMACHINE  value in the option parameter.

2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  New openotpPKILogin SOAP request[ ] [ ] [ ]
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  > Certificate: Default alery 46[ ] [ ] [ ] \v ( )
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  > Client ID: PKITestPolicy[ ] [ ] [ ]
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  > Source IP: 192.168.4.200[ ] [ ] [ ]
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  Registered openotpPKILogin request[ ] [ ] [ ]
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  Resolved LDAP user: 

CN valery,OU SUPAdmins,DC support,DC rcdevs,DC com cached
[ ] [ ] [ ]

= = = = = ( )
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  Resolved source location: US[ ] [ ] [ ]
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  Started transaction lock  user[ ] [ ] [ ] for
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  Found user fullname: valery[ ] [ ] [ ]
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  Found  user settings: EnableLogin Yes[ ] [ ] [ ] 10 =
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  User has no certificate registered[ ] [ ] [ ]
2021-07-23 11:34:47  10.2.3.6:58211  OpenOTP:O37D471C  Sent failure response[ ] [ ] [ ]



For certificates issued by WebADM/Rsignd PKI, OpenOTP is involved in the login process to apply WebADM client policies. For

EAP-TLS, it is useless to customize OpenOTP settings like the login factors (LDAP, OTP, LDAPOTP) or the token type because

these settings are not applied in EAP-TLS authentication. Anyway, it can be useful to create WebADM client policies for your EAP

systems. For example, you can allow which user domain(s) is/are able to access that system, which group(s) is/are allowed to log

in on that system, configure excluded days where the logins are not allowed on that system… Below, an example of the client

policy I created for my Wi-Fi access. 

In my Support WifiSupport Wifi  policy, I allowed my Wifi_UsersWifi_Users  group to log in and disallow my Domain AdminsDomain Admins  group. Iʼve

configured allowed hours and days to access that system. I configured the NAS-IdentifierNAS-Identifier  sent by my EAP system in the

Client Name AliaseClient Name Aliase . This is needed to match the WebADM client policy with the client system.

6. Client policies for EAP-TLS, EAP-TTLS logins

6.1 EAP-TLS policy



For certificates issued by an external PKI, OpenOTP can not be involved in the login process to apply WebADM client policies.

For EAP-TTLS and EAP-GTC client systems, you can create WebADM/OpenOTP client policies. In that scenario, OpenOTP is

involved to validate credentials provided by the user during the authentication. In that scenario, you can configure OpenOTP

settings. The first OpenOTP setting you need to configure for these clients systems is the de-activation of the challenge mode

support because it is not supported by EAP clients. You can choose which factor you want to validate with OpenOTP (LDAP, OTP,

LDAPOTP) for EAP-TTLS/GTC logins : 

6.2 EAP-TTLS policy



If you choose the LDAPOTP login mode, you must provide the LDAP password and the OTP in concatenated mode during the

authentication. Use that kind of login mode will prevent you to save credentials for that system because the OTP will not be valid

anymore for the next authentication.

The push login is supported on that mode. It means you just need to provide an LDAP username and password during the

authentication, and then you will receive a push login request to finish the login process. LDAP credentials can be saved for the

next login, you will just have to approve the push request for the next logins.

Another interesting feature that can be used here is the implementation of applications passwordsapplications passwords . When the

applications passwordsapplications passwords  feature is enabled for a system, users can use a password randomly generated by WebADM to

log in on a specific system. Application passwordsApplication passwords  are generated per client policy and are unique for each user.

Applications passwordsApplications passwords  can be configured under OpenOTP configuration and can be generated by end-users through

RCDevs self-services.

E.g. of application passwordapplication password  generated for my Wifi SupportWifi Support  client policy through the User Self-Service Desk.

 Application password and OpenOTP login mode

Applications passwords are not entering in conflict with the Login ModeLogin Mode  configured in OpenOTP. For e.g, if the

Login ModeLogin Mode  is configured to LDAPOTPLDAPOTP , users can log in using their application passwordapplication password  or the LDAP and OTP

passwords/Push.



Usage of my Application password to login : 

I am successfully authenticated with my application passwordapplication password . 



Below, the WebADM/OpenOTP logs regarding the authentication performed with my application password.

6.2.1 OpenOTP logs for login with an application password

2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  New openotpSimpleLogin SOAP 
request
[ ] [ ] [ ]

2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  > Username: foo[ ] [ ] [ ]
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  > Password: xxxxxxxxxxxxxxxxxxxx[ ] [ ] [ ]
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  > Client ID: 586d8fa0308d[ ] [ ] [ ]
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  > Settings: 

OpenOTP.ChallengeMode No
[ ] [ ] [ ]

=
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  > Options: RADIUS,NOVOICE,-U2F[ ] [ ] [ ]
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Enforcing client policy: Support Wifi 
matched client ID

[ ] [ ] [ ]
( )
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Registered openotpSimpleLogin 

request
[ ] [ ] [ ]

2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Checking OpenOTP license  
RCDevs Support
[ ] [ ] [ ] for

2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  License Ok 34/50 active users[ ] [ ] [ ] ( )
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Resolved LDAP user: CN foo 

bar,OU SUPAdmins,DC support,DC rcdevs,DC com cached
[ ] [ ] [ ] =

= = = = ( )
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Resolved LDAP groups: 

super_admin,domain admins,schema admins,administrators,denied rodc password replication group
[ ] [ ] [ ]

2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Started transaction lock  user[ ] [ ] [ ] for
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Found user fullname: foo[ ] [ ] [ ]
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Found user language: FR[ ] [ ] [ ]
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Found  user emails: 

support@rcdevs.com
[ ] [ ] [ ] 1









Radius return attributes can be used with both EAP-TTLS and TLS starting from WebADM 1.7.9-1 and Radius Bridge 1.3.11. This is

a powerful mechanism that allows you to centrally control various characteristics of the network connection on per user/group

basis, for example:

VLAN allocation

Access Control List Configuration

Quality of Service Policies

Please refer to your network equipment documentation on which attributes can be used for your specific use case. The related

WebADM configuration is explained in the Radius Attributes guide.

This manual was prepared with great care. However, RCDevs Security S.A. and the author cannot assume any legal or other liability for possible errors and their consequences. No
responsibility is taken for the details contained in this manual. Subject to alternation without notice. RCDevs Security S.A. does not enter into any responsibility in this respect. The
hardware and software described in this manual is provided on the basis of a license agreement. This manual is protected by copyright law. RCDevs Security S.A. reserves all rights,
especially for translation into foreign languages. No part of this manual may be reproduced in any way (photocopies, microfilm or other methods) or transformed into machine-readable
language without the prior written permission of RCDevs Security S.A. The latter especially applies for data processing systems. RCDevs Security S.A. also reserves all communication
rights (lectures, radio and television). The hardware and software names mentioned in this manual are most often the registered trademarks of the respective manufacturers and as
such are subject to the statutory regulations. Product and brand names are the property of RCDevs Security. © 2024 RCDevs Security S.A., All Rights Reserved

support@rcdevs.com
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Found  user settings: 

LoginMode LDAPOTP,OTPType TOKEN,PushLogin Yes,ChallengeMode No,ChallengeTimeout 90,OTPLength
1:HOTP-SHA1-6:QN06-
T1M,DeviceType FIDO2,U2FPINMode Discouraged,SMSType Normal,SMSMode Ondemand,MailMode Ondemand,PrefetchExpire

 Items

[ ] [ ] [ ] 52
= = = = =

= = = = =
[2 ]
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Found  request settings: 

ChallengeMode No
[ ] [ ] [ ] 1

=
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Found  user data: 

ListInit,ListState,AppKeyInit,Device1Type,Device1Name,Device1Data,Device1State,TokenType,TokenKey,TokenState,TokenID,TokenSerial
[ ] [ ] [ ] 12

2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  OTP List present 0/25 passwords 
used
[ ] [ ] [ ] (

)
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Application passwords present valid 

 2022-01-15 11:42:17
[ ] [ ] [ ] (
until )
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Found  registered OTP token 
TOTP

[ ] [ ] [ ] 1
( )
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Challenge mode disabled assuming 

concatenated passwords
[ ] [ ] [ ] (

)
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Requested login factors: AppKey | 
LDAP & OTP

[ ] [ ] [ ]
( )
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Application password Ok Support 

Wifi
[ ] [ ] [ ] (

)
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Returning  RADIUS reply attributes[ ] [ ] [ ] 8
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Updated user data[ ] [ ] [ ]
2021-07-19 12:45:12  192.168.4.20:42248  OpenOTP:8VTOGU9W  Sent login success response[ ] [ ] [ ]

7. Radius Return Attributes

http://127.0.0.1/howtos/radius_attrs/radius_attrs/



	EAP Authentications WLAN EAP EAP-TLS EAP-TTLS EAP-GTC 802.1X OCSP NAC Network Access Control Wifi Switch Router Port Based authentication WIFI Authentication LAN Authentication
	1. Overview
	1.1 PKI Service
	1.2 Certificates
	1.3 Supported EAP scenarios and transport
	1.4 Custom integrations for Certificate based authentications
	1.5 Prerequisites

	2. Radius Bridge configuration for EAP (Authentication Server)
	2.1 Radius Server configuration for EAP-TLS support
	2.2 Radius Client Configuration

	3. Authenticator configuration examples
	3.1 WLAN Cisco Controller
	3.2 For WLAN Access Point
	3.3 Cisco Switch Catalyst

	4. Supplicants configurations
	4.1.1 User certificate based authentication
	4.1 Windows 10/11
	4.1.2 Device certificate based authentication
	4.2.1 User certificate based authentication

	4.2 macOS / iOS
	4.2.2 Device certificate based authentication
	4.3.1 User certificate based authentication

	4.3 Android
	4.4.1 User certificate based authentication

	4.4 Linux
	4.4.2 Device certificate based authentication


	5. Certificate-based authentication for custom integrations (API integrations)
	6. Client policies for EAP-TLS, EAP-TTLS logins
	6.1 EAP-TLS policy
	6.2 EAP-TTLS policy
	6.2.1 OpenOTP logs for login with an application password


	7. Radius Return Attributes

