RCDevs
i _.

security solutior

APl EXAMPLES

The specifications and information in this
document are subject to change without
notice. Companies, names, and data used in
examples herein are fictitious unless otherwise
noted. This document may not be copied or
distributed by any means, in whole or in part,
for any reason, without the express written
permission of RCDevs Security.

Limited Warranty - Copyright (c) 2010-2024 RCDevs Security SA. All Rights

Reserved.

WebADM and OpenOTP are trademarks of
RCDevs. All further trademarks are the
property of their respective owners.

No guarantee is given for the correctness of
the information contained in this document.
Please send any comments or corrections to
info@rcdevs.com.

www.rcdevs.com

mailto:info@rcdevs.com
file://www.rcdevs.com

Bi APl examples

API REST API SOAP API

1. Manager API

The Manager interface provides access to some WebADM user management functions and operations exported by your
registered applications. The Manager also allows external systems such as Web portals to remotely trigger user management

operations and actions from the network.

The user management functions provide LDAP operations such as object creation, update, removal, WebADM settings and data

management, etc... The method names for internal management functions are in the form Manager_Method.

The operations exported by the registered applications provide access to any feature which is accessible from the application

actions in the Admin Portal. The method names for application-exported functions are in the form Application.Manager_Method.

The interface communication protocol is based on the JSON-RPC v2.0 specification. You can find the JSON-RPC specification at

JSON-RPC 2.0 Specification.

You can go to the Manager Interface page in the WebADM Admin menu to have a full listing of the supported Manager functions
and parameters. You can then navigate between applications to get the Manager functions supported by a specific registered

application.

The Manager API requires authentication and a WebADM administrator account must be provided to access the interface. The
authentication mechanism which is enforced is always the same as the mechanism configured for the WebADM Admin Portal (i.e.

The auth_mode setting in the webadm.conf file).

M Note

Any LDAP permission or OptionSet restriction configured in WebADM will be enforced within the Manager interface.

Administrators have also the same level of access in the Manager as they have in the Admin Portal.

> With DN login mode, the administrator DN and password must be provided in the HTTP-Basic Authorization header.
> With UID login mode, the administrator user ID and password must be provided in the HTTP-Basic Authorization header.
> With PKI login mode, the administrator’s user certificate must be used for establishing the HTTPs connection to the interface

and the administrator password must be provided in the HTTP-Basic Authorization header.

A connection to the Manager automatically creates an Administrator session in WebADM for processing the requested methods if
manager._sessionin webadm.confis greater than 0. The Manager responses return a session cookie called WEBADMMANAG in the

response headers. You can pass the session cookie in the next Manager requests to avoid starting new sessions.

Note that the Manager sessions have a short expiration time are automatically closed after 10 seconds of inactivity. Yet, you can

force the closure of the session by passing the “Connection: close” header to the requests.

http://127.0.0.1/tags/api
http://127.0.0.1/tags/rest-api
http://127.0.0.1/tags/soap-api
https://www.jsonrpc.org/specification

The Manager interface is accessible at the URL: https://<yourserver>/manag/ .

All functions are described in WebADM > Admin > Remote Manager Interface andinfollowingfiles:

/opt/webadm/websrvs/openotp/export.xmi
/opt/webadm/websrvs/opensso/export.xml
/opt/webadm/webapps/selfreg/export.xml
Jopt/webadm/websrvs/smshub/export.xml
/opt/webadm/websrvs/spankey/export.xml
Jopt/webadm/lib/schemas/webadm_export.xml

1.1 Examples

Find below a few simple examples of the use of the WebADM Manager interface. The examples are written in PHP and use the
CURL extension to send the JSON-RPC call over HTTP.

1.1.1 Resolve the DN of an Existing User

From shell with curl:

curl -k\

--user "cn=admin,o=root:password"\

--header "Content-Type: application/json"\

--data '{"method":"Get_User DN", "params": {"username":"test _user", "domain": "Default"}, "id":0,
"jsonrpc":"2.0"}"\

https://localhost/manag/

With php:

<?php

$method = 'Get _User DN/;
$params = array(
‘username’ => 'test_user’,
'domain' => 'Default’,

b

$request = array(

'jsonrpc' => "2.0",

'method' => $method,
'params' => $params,

'id' => 0);

$json = json_encode($request);

$ch = curl_init();

curl_setopt($ch, CURLOPT URL, "https://localhost/manag/");
curl_setopt($ch, CURLOPT _USERPWD,"cn=admin,o=root:password");
curl_setopt($ch, CURLOPT_HTTPHEADER, array("connection: close"));
curl_setopt($ch, CURLOPT _FOLLOWLOCATION, 1);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT _SSL VERIFYPEER, 0);

curl_setopt($ch, CURLOPT POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $json);

$out = curl_exec($ch);

curl_close($ch);

print_r(json_decode($out));
7>

The manager will return a structure in the form:

stdClass Object
(

[jsonrpc] => 2.0
[result] => cn=test_user,0=Root
[id]=>0

If you use PKI Authentication for the manager API, the following example applies with administrator user certificate in pem

format:

<?php

$method = 'Get _User DN';

$params = array(

‘username’ => 'test_user’,

'domain' => 'Default’,

Iz

curl requires full path to certificate files
$caFile = getcwd() . '/ca.crt’;

$keyFile = getcwd() . '/admin.key.pem’;
$certFile = getcwd() . '/admin.crt.pem’;
$certPass = "certpassword";

$request = array(

'jsonrpc' => "2.0",

'method' => $method,
'params' => $params,

'id' => 0);

$json = json_encode($request);

$ch = curl_init();

curl_setopt($ch, CURLOPT _URL, "https://webadm.local/manag/");
curl_setopt($ch, CURLOPT SSLKEY, $keyfFile);

curl_setopt($ch, CURLOPT_CAINFO, $caFile);

curl_setopt($ch, CURLOPT_SSLCERT, $certFile);

curl_setopt($ch, CURLOPT_SSLCERTPASSWD, $certPass);
curl_setopt($ch, CURLOPT USERPWD,"cn=admin,o=Root:password");
curl_setopt($ch, CURLOPT_HTTPHEADER, array("connection: close"));
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

curl_setopt($ch, CURLOPT POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $json);

$out = curl_exec($ch);

curl_close($ch);

print_r(json_decode($out));
7>

$method = 'Search LDAP_Objects';
$params = array(

'basedn' => 'o=root',

'filter' => '(objectclass=webadmaccount)’,
‘attrs' => array('mail')

I

Will return:

stdClass Object
(
[jsonrpc] => 2.0
[result] => stdClass Object

(
[cn=testl,o=Root] => stdClass Object

(
[mail] => stdClass Object

(

[0] => testl@mycompany.com

)
[cn=test2,0=Root] => stdClass Object

(
[mail] => stdClass Object

(
[0] => test2@mycompany.com

[i[d]=>0

1.1.3 Set the User Mobile Number and Email Address

$method = 'Set_User_attrs';

$params = array(

'dn' => 'cn=test,o=root’,

‘attrs' => array('mobile' => array('12345678'), 'mail' => array('test@test.com')),
Iz

Will return:

stdClass Object
(

[jsonrpc] => 2.0
[result] =>1
[id]=>0

1.1.4 Get the User Mobile Number and Email Address

From shell with curl:

curl -k --user "cn=admin,o=root:password"\

--header "Content-Type: application/json"\

--data '{"method":"Get_User_ Attrs", "params": {"dn":"cn=test,o=root","attrs":
{"0":"mobile","1":"mail"}},"id":0, "jsonrpc":"2.0"}'\

https://localhost/manag/

Will return:

{"jsonrpc":"2.0","result": {"mail":{"0":"test@test.com"},"mobile": {"0":"12345678"} },"id":0}

With PHP:

$method = 'Get_User_attrs';
$params = array(

'dn' => 'cn=test,o=root’,

‘attrs' => array('mobile', 'mail'),

)

Will return:

stdClass Object

(
[jsonrpc] => 2.0
[result] => stdClass Object

(
[mobile] => Array
(
[0] => 12345678
)

[mail] => Array

(
[0] => test@test.com
)
)
[id]=>0

$method
$params = array(

'dn' => 'cn=test,o=root/,

'settings' => array('OpenOTP.LoginMode' => 'LDAPOTP', 'OpenOTP.SecureMail' => false),
);

'Set_User_Settings';

Will return:

stdClass Object

(
[jsonrpc] => 2.0
[result] =>1
[id]=>0

$method = 'OpenOTP.HOTP_Register’;

$params = array(

'‘dn' => 'cn=test,o=root',

'key' => base64 _encode(“12345678901234567890"),
‘counter' => 0

)

Will return:

stdClass Object

(
[jsonrpc] => 2.0
[result] => 1
[id]=>0

$method = 'Create_LDAP_Object’;
$params = array(
‘dn' => 'cn=test_user,o=root’,
'attrs' => array('objectclass' => array('person’','inetorgperson','webadmaccount'),
'uid' => array('test_user'),
'userpassword' => array('password'),
'sn' => array('Test User'))

Will return:

stdClass Object

(
[jsonrpc] => 2.0
[result] => 1
[id]=>0

In this example, we send two RPC commands in one single request.

$method = 'Create_LDAP_Object’;
$params = array(

‘dn' => 'cn=test_admin,o=root’,

'attrs' => array('objectclass' => array('person’,'inetorgperson'),
'uid' => array('test_ admin'),
'userpassword' => array('password'),
'sn' => array('Test Admin'))

i

$requestl = array(
'jsonrpc' => "2.0",
'method' => $method,
'params' => $params,
d'=>1

$method = 'Set_User Attrs';
$params = array(
'‘dn' => 'cn=other_admins,dc=WebADM',

'attrs' => array(‘member' => array('cn=test_admin,o=root')),
'values' => true

Jk

$request2 = array(
'jsonrpc' => "2.0",
'method' => $method,

'params' => $params,
id' => 2

$request = array($requestl, $request2);

Will return:

Array
(
[0] => stdClass Object
(
[jsonrpc] => 2.0
[result] =>1
[id]=>1
)
[1] => stdClass Object
(
[jsonrpc] => 2.0
[result] =>1
[id] => 2

$method = 'Set_User_Password’;
$params = array(

'‘dn' => 'cn=test,o=root',
'password' => 'newpassword'

)

Will return:

stdClass Object

(
[jsonrpc] => 2.0
[result] =>1
[id]=>0

$method = 'Server Status';
$params = array(
'servers' => true,
'webapps' => true,
'websrvs' => true,

Will return:

stdClass Object
(
[jsonrpc] => 2.0
[result] => stdClass Object
(
[version] => 1.6.6-2
[enabled] =>1
[servers] => stdClass Object
(
[[dap]l =>1
[sqll =>1
[session] => 1
[pki] =>1
[push] =>1

[webapps] => stdClass Object

(
[pwreset] => stdClass Object

(
[version] => 1.0.8-3
[enabled] =>1
[status] =>1

[websrvs] => stdClass Object

(
[openotp] => stdClass Object

(

[version] => 1.3.11

[enabled] =>1

[status] =>1

[status] =>1

[i[d]=>0

The below examples are with curl, but the methods can be called also with PHP or any other JSON-RPC compatible language.

curl -k --user "CN=admin,O=root:password" --header "Content-Type: application/json" --data
'{"method":"Get _License_Details", "id":0, "jsonrpc":"2.0"}" https://localhost/manag/

Will return:

{"jsonrpc":"2.0","result":{"type":"Trial (Cloud-
based)","token_pool":"2\/2","cache_time":862022,"customer_id":"CUSTID01","instance_id":"1","valid_from":"
10-12 00:00:00","valid_to":"2019-10-13 00:00:00","products":{"OpenOTP":
{"maximum_users":"500"},"SpanKey":{"maximum_hosts":"5"},"TiQR":
{"maximum_users":"50"}},"error_message":null},"id":0})

$method = 'Count_Activated Users';
$params = array(
b

[jsonrpc] => 2.0
[result] => 498
[id]=>0

This operation is more complex because it needs a session for the registration with the push.

First, you generate a new key:

$method = 'Get Random_Bytes';
$params = array(
'length' => '20'

[jsonrpc] => 2.0
[result] => wU70GD4R9IktjXtF)mGyGIOWDXE= # -> $key
[i[d]=>0

You start a new session:

$method = 'OpenOTP.Mobile_Session';
$params = array(
'timeout' => '600'

[jsonrpc] => 2.0
[result] => aN1)BKnmEMLt3IAV. # -> $session
[id]=>0

You get a registration URI:

$method = 'OpenOTP.TOTP_URI";
$params = array(
'name' => 'My token’,
'key' => $key,
'userid' => "john",
'domain' => "default",
'session' => $session

stdClass Object
(

[jsonrpc] => 2.0
[result] => otpauth://totp/My%?20token?
secret=yfhogqgb6ch3fsimnpncsmynsdjotadyr&algorithm=SHA1&digits=6&issuer=My%20Service&period=30

-> $uri
[id]=>0

You generate a QR code with that URI, the TXT format is useful for testing in a terminal (use a white screen and not a black screen

with inverted text colors), but you can also use GIF or JPG:

$method = 'Get_ QRCode’;
$params = array(

uri' => $uri,
‘format' => '"TXT',
'margin' => '4',
'size' =>"1"'

[jsonrpc] => 2.0
[result] => # base64 encoded qrcode

[id]=>0

You can show the grcode with this command:

print(base64_decode(json_decode($out, true)['result']));
Now, you need to wait that the token is registered with the OpenOTP app

'OpenOTP.Mobile_Response’;

$method =
$params = array(
'session' => $session,

);

[jsonrpc] => 2.0
[result] => 2
[id]=>0

Once the result becomes 1, you can register the token:

'OpenOTP.TOTP_Register;

$method =
$params = array(
'dn' => 'cn=john,o=Root’,
'key' => $key,

'session' => $session

[jsonrpc] => 2.0
[result] =>1
[id]=>0

1.1.14 Detached Soft Token Registration with Push

In this case the QRCode can be sent separately to the user, and you don’t need to wait for the soft token registration.
First, you generate a new key:

$method = 'Get Random_Bytes';

$params = array(
'length' => '20'

[jsonrpc] => 2.0
[result] => wU70GD4R9IktjXtF)mGyGIOwWDXE= # -> $key

[i[d]=>0

You start a new session, you need to define a pincode to protect the QRCode and the QRCode will be usable until the end of the

session:
$method = 'OpenOTP.Mobile_Session’;
$params = array(

'timeout' => '600'
'pincode' => '123456',

[jsonrpc] => 2.0
[result] => aN1)]BKnmEMLt3IAV. # -> $session

[id]=>0
You register the token, it will be added to the user once the mobile app scan successfully the QRCode and not before:

'OpenOTP.TOTP_Register’;

$method =
$params = array(
'dn' => 'ch=john,o=Root’,
'key' => $key,

'session' => $session

[jsonrpc] => 2.0
[result] =>1
[id]=>0

You get a registration URI:

$method = 'OpenOTP.TOTP_URI";
$params = array(
'name' => 'My token',
'key' => $key,
‘'userid' => "john",
'domain' => "default",
'session' => $session

[jsonrpc] => 2.0

[result] => otpauth://totp/My%20token?
secret=yfhogqgb6ch3fsimnpncsmynsdjotadyr&algorithm=SHA1&digits=6&issuer=My%20Service&period=30

-> $uri
[id] =>0

You generate a QR code with that URI, the TXT format is useful for testing in a terminal (use a white screen and not a black screen

with inverted text colors), but you can also use GIF or JPG:

$method = 'Get_ QRCode’;
$params = array(
'uri' => $uri,

‘format' => "TXT',
'margin' => '4',
'size' =>"1"'

[jsonrpc] => 2.0
[result] => # base64 encoded qrcode

[id]=>0

You can show the grcode with this command:

print(base64_decode(json_decode($out, true)['result']));

1.1.15 Signing a certificate signing request (CSR)
The manager API allows you to submit a CSR, which will signed by WebADM PKiI service and a final certificate returned.

You can generate the CSR with any tool, but in this example we use OpenSSL. For example the below command will generate a

private key and associated CSRfora User certificate forusername test-cert in WebADM User Domain De fault :

openssl req -new -newkey rsa:2048 -nodes -keyout user.key -out user.csr -subj '/CN=Default\\test-
cert/UID=test-cert/DC=Default/description=USER/SN=test-cert'

To generatean Admin certificate which can be used for WebADM and Manager API authentication you can use the below

command. The distinction between User and Admin certificateisthe description field.

openssl req -new -newkey rsa:2048 -nodes -keyout admin.key -out admin.csr -subj '/CN=cn=test-
cert,o=root/description=ADMIN/SN=test-cert'

When you have the CSR, you can have it signed with the Manager API:

<?php

$method = 'Sign_certificate_Request’;

$params = array(
‘request’ => file_get_contents("user.csr"),
);

$request = array(

'isonrpc' => "2.0",

'method' => $method,
'params' => $params,

'id' => 1);

$json = json_encode($request);

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, "https://localhost/manag/");
curl_setopt($ch, CURLOPT _USERPWD,"Default\\admin:password");
curl_setopt($ch, CURLOPT_HTTPHEADER, array("connection: close"));
curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 1);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

curl_setopt($ch, CURLOPT SSL VERIFYHOST, false);
curl_setopt($ch, CURLOPT POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $json);

$out = curl_exec($ch);

curl_close($ch);

print_r(json_decode($out));
7>

This will return the certificate in PEM format. To use the certificate for authentication, it must be registered on a user, you can use

the Set_User_attrs method for this:

$cert = file_get contents("user.crt");
$method = 'Set_User Attrs';
$params = array(

‘dn' => 'cn=test-cert,o=root’,

'attrs'=> array(
'usercertificate'=> array(preg_replace ('/(----- e)\s/',", $cert)),
)I

'values' => True

2. Web Services API

2.1 SOAP API

Web services are available through a SOAP API. API description and wsdl file are available here:

> openotp (Authentications) https://<my_webadm_server>/websrvs/wsdl.php?websrv=openotp

> smshub (Sending SMS) https://<my_webadm_server>/websrvs/wsdl.php?websrv=smshub

> opensso(Single Sign-On) <my_webadm_server>/websrvs/wsdl.php?websrv=opensso
2.1.1 Example

The example is written in PHP and use the SOAP extension.

<?php
$soap_client = new SoapClient("https://localhost/websrvs/wsdl.php?websrv=openotp");

$username = "test_user";
$ldapPassword = "foo";

$response = $soap_client->openotpNormalLogin($username, null, $ldapPassword);
print_r($response);

7>

With PHP versions later than 5 SSL peer verification is on by default and must be disabled unless the server is using CA trusted by

the client.

<?php

$sctx = stream_context_create(array('ssl' => array('verify_peer' => false, 'verify_peer_name' => false)));
$soap_client = new SoapClient("https://localhost:8443/openotp?wsdl”, array('stream_context' => $sctx));
$username = "test user";

$ldapPassword = "foo";

$otp = "123456";

$response = $soap_client->openotpNormalLogin($username, null, $ldapPassword,$otp);

print_r($response);

7>

http://127.0.0.1/howtos/api_wsdl_openotp/api_wsdl_openotp/
http://127.0.0.1/howtos/api_wsdl_smshub/api_wsdl_smshub/
http://127.0.0.1/howtos/api_wsdl_opensso/api_wsdl_opensso/

2.2 REST API

Authentication is also possible with a REST API. You can send information with GET, POST or POST-JSON. Functions and
attributes are the same as with SOAP API.

If you wish to secure the access to the REST APl with a certificate, you can configure thisin WebADM Applications >
MFA Authentication server > CONFIGURE > Require Client Certificate .Once thisisenabled,you haveto

issue Client certificates for the APl clients in WebADM > Admin > Issue Server or Client SSL Certificate.

2.2.1 Example with GET:

wget "https://localhost:8443/openotp/json/openotpNormallLogin/?
username=test_user&ldapPassword=foo"

wget "https://localhost:8443/openotp/json/?
method=openotpNormalLogin&username=test_user&ldapPassword=foo"

With certificate authenticating the client:

wget --certificate=client.crt --no-check-certificate \
"https://localhost:8443/openotp/json/openotpNormalLogin/?username=test_user&ldapPassword=foo"

2.2.2 Example with POST-JSON:

wget --post-data="'{"username":"test_user","ldapPassword":"foo"}"' \
"https://localhost:8443/openotp/json/openotpNormalLogin/"

With certificate authenticating the client:

wget --certificate=client.crt --no-check-certificate \
--post-data="'{"username":"test user","ldapPassword":"foo"}" \
"https://localhost:8443/openotp/json/openotpNormalLogin/"

This manual was prepared with great care. However, RCDevs Security S.A. and the author cannot assume any legal or other liability for possible errors and their consequences. No
responsibility is taken for the details contained in this manual. Subject to alternation without notice. RCDevs Security S.A. does not enter into any responsibility in this respect. The
hardware and software described in this manual is provided on the basis of a license agreement. This manual is protected by copyright law. RCDevs Security S.A. reserves all rights,
especially for translation into foreign languages. No part of this manual may be reproduced in any way (photocopies, microfilm or other methods) or transformed into machine-readable
language without the prior written permission of RCDevs Security S.A. The latter especially applies for data processing systems. RCDevs Security S.A. also reserves all communication
rights (lectures, radio and television). The hardware and software names mentioned in this manual are most often the registered trademarks of the respective manufacturers and as
such are subject to the statutory regulations. Product and brand names are the property of RCDevs Security. © 2024 RCDevs Security S.A., All Rights Reserved

	API examples API REST API SOAP API
	1. Manager API
	1.1 Examples
	1.1.1 Resolve the DN of an Existing User
	1.1.2 Search Email for LDAP Users with the webadmAccount Extension
	1.1.3 Set the User Mobile Number and Email Address
	1.1.4 Get the User Mobile Number and Email Address
	1.1.5 Set Some User Application Settings
	1.1.6 Register a HOTP Token with OpenOTP
	1.1.7 Create a WebADM-Enabled User
	1.1.8 Create an Administrator User and Add Home to the Admin Group
	1.1.9 Change a User Password
	1.1.10 Server Status
	1.1.11 License Status
	1.1.12 Activated user count
	1.1.13 Soft Token Registration with Push
	1.1.14 Detached Soft Token Registration with Push
	1.1.15 Signing a certificate signing request (CSR)

	2. Web Services API
	2.1 SOAP API
	2.1.1 Example

	2.2 REST API
	2.2.1 Example with GET:
	2.2.2 Example with POST-JSON:

