
The specifications and information in this document are subject to change without notice. Companies, names, and data used
in examples herein are fictitious unless otherwise noted. This document may not be copied or distributed by any means, in
whole or in part, for any reason, without the express written permission of RCDevs Security.

Copyright (c) 2010-2023 RCDevs Security SA. All Rights Reserved.
http://www.rcdevs.com

WebADM and OpenOTP are trademarks of RCDevs. All further trademarks are the property of their respective owners.

Limited Warranty

No guarantee is given for the correctness of the information contained in this document. Please send any comments or
corrections to info@rcdevs.com.

RADIUS BRIDGE SERVER

http://www.rcdevs.com/
mailto:info@rcdevs.com

This document is a configuration guide for OpenOTP Radius Bridge (RB). The reader should notice that this document is not a

guide for installing and configuring OpenOTP or WebADM. Specific application guides are available through the RCDevs

documentation website.

OpenOTP Radius Bridge provides the RADIUS RFC-2865 (Remote Authentication Dial-in User Service) API for OpenOTP

Authentication Server. Standalone, the OpenOTP server provides SOAP/XML and JSON interfaces over HTTP and HTTPS. By

installing and configuring Radius Bridge, you can connect a RADIUS-compliant VPN or any other system supporting the RADIUS

authentication protocol.

Radius Bridge is not included in the OpenOTP installation package but in an additional in a self-installer package or through

RCDevs repository. It is implemented using the FreeRADIUS software.

FreeRADIUS is the most widely used RADIUS server implementation. More specific FreeRADIUS configurations can be found on the

FreeRADIUS web site. The RADIUS RFC-2865 specification provides a Challenge-Response mechanism. OpenOTP challenge

authentication mode is also fully supported in the OpenOTP RADIUS API with the RADIUS Challenge-Response. Yet some VPNs do

not support RADIUS Challenge-Response. RB also supports concatenated password options for these VPNs. Challenge mode is

required for OpenOTP SMS and Mail authentication (in on-demand operating mode).

The Radius Bridge server supports very high loads, is multithreaded and takes advantage of multicore architectures. In clustered

environments, it does not require specific RADIUS challenge session tracking as this is completely handled at the OpenOTP level.

Find below the RB software installation directory structure and important files.

• /opt/radiusd/bin/ : Location for RB service binaries and setup.

radiusd: RB executable control script for starting and stopping the server process. To start RB from the command line, issue

./radiusd start. To stop RB, issue ./radiusd stop.

setup: Initial RB setup script automatically run by the self-installer. The setup can be re-run manually at any time.

radtest: Simple RADIUS client test tool. You can use it to check your RB system is working properly without needing to test from

the VPN server.

backup: Script to backup your Radius Bridge configuration.

 Radius Bridge Server
Radius

1. Product Documentation

2. Product Overview

3. Product Files and Folders

https://docs.rcdevs.com/tags/radius
https://docs.rcdevs.com/
http://www.freeradius.org

restore: Script to restore your Radius Bridge configuration.

• /opt/radiusd/doc/ : Location for RB documentation resources.

• /opt/radiusd/conf/ : Location for RB configuration files.

• radiusd.conf: Main RB configuration file. The setup script should configure this file for you. This file also contains the OpenOTP

configurations. This is the most important file and we will see the settings in details in the Configuration section.

• clients.conf: Like in any RADIUS server, you must declare your RADIUS clients (ex. VPN servers). A client consists of the VPN IP

address and its RADIUS shared secret. One client must be defined per system connected to RB.

• /opt/radiusd/lib/ : Location for RB system libraries.

• /opt/radiusd/lib/dictionaries/ : Location for supported RADIUS vendor dictionaries.

• /opt/radiusd/libexec/ : Location for RB system executables.

• /opt/radiusd/logs/ : Location for log files produced by RB.

• /opt/radiusd/temp/ : Location for temporary files produced by RB.

RB automatically checks the configuration files for syntax errors or mistakes and displays any problem discovered at startup.

On a RedHat, Centos or Fedora system, you can use our repository, which simplifies updates. Add the repository:

Clean yum cache and install Radius Bridge:

Radius Bridge is now installed.

On a Debian system, you can use our repository, which simplify updates. Add the repository:

4. Installation

4.1 Install with Redhat Repository

yum install https://repos.rcdevs.com/redhat/base/rcdevs_release-1.1.1-1.noarch.rpm

yum clean all
yum install radiusd

4.2 Install with Debian Repository

Clean cache and install Radius Bridge:

Radius Bridge is now installed.

The installation of RB is very simple and is performed in less than 5 minutes. Just download the RB self-installer package on

RCDevs website and put the installer file on your server. You can use WinSCP to copy the file to your server. To install RB, login to

the server with SSH and run the following commands:

The installer will install RB in /opt/radiusd/ and will run the setup script automatically. The setup will create the UNIX system user

(radiusd), set file and directory permissions, register the startup of RB at system start.

A setup script is available to configure Radius Bridge. This script can be launched with /opt/radiusd/bin/setup

command.

wget https://repos.rcdevs.com/debian/base/rcdevs-release_1.1.1-1_all.deb
apt-get install ./rcdevs-release_1.1.1-1_all.deb

apt-get update
apt-get install radiusd

4.3 Install Using the Self-Installer

gunzip radiusd-1.2.x.sh.gz
bash radiusd-1.2.x.sh

 Note

Like other RCDevs software, RB installs its files in one directory only (in /opt/radiusd/). No other is copied to your system but the

startup links.

5. Configuration

5.1 Setup Script

At this step, you have to log in on the WebADM Administration GUI to approve the SSL certificate request.

Click on the red button at the end of the home page.

On the next screen, you can see the SSL certificate request is pending:

Click on the Accept button and the Radius Bridge setup will continue.

In this section, we will review and explain all the available OpenOTP settings in Radius Bridge. By default, your RB should work

without modifying any setting.

root@webadm2 opt[]# /opt/radiusd/bin/setup
Checking system architecture...Ok
Enter the server fully qualified host name FQDN : webadm2.yorcdevs.com()
If WebADM is running on this server press Enter.then
Else enter one of your running WebADM server IP or hostname.
Note: You can use host:port WebADM uses a custom HTTPS port.if
Enter WebADM server IP or hostname: 192.168.3.55
Found two server URLs:
> URL1: https://192.168.3.54:8443/openotp/
> URL2: https://192.168.3.55:8443/openotp/
Retrieving WebADM CA certificate... Ok
The setup needs now to request a signed SSL server certificate.
This request should show up as pending your WebADM interface and an administrator
must accept it!

in

Waiting minutes approbation...5 for

Waiting minutes approbation... Ok5 for
Updating OpenOTP configuration file... Ok
Setting file permissions... Ok
Do you want OpenOTP RADIUS Bridge to be automatically started at boot y/n ? y()
Adding systemd service... Ok
Do you want to register OpenOTP RADIUS Bridge logrotate script y/n ? y()
Adding logrotate script... Ok
OpenOTP RADIUS Bridge has successfully been setup.

5.2 Radiusd Configuration File

#

#
OpenOTP RADIUS Bridge configuration
#

Server URL(s)
OpenOTP SOAP service URL(s). This is the only mandatory setting.
When two servers are used, you can set server_url in the form "url1,url2" or you can
preferably
comment the server_url line and configure server_url1 and server_url2.
server_url1 https://192.168.3.54:8443/openotp/=
server_url2 https://192.168.3.55:8443/openotp/=

Request routing policy
Request routing policy when two server URLs are defined.
Ordered: First server is preferred (default). When down, second server is used.
Balanced: Server is chosen randomly. When down, the other is used.
Consistent: One specific user ID is always routed to the same server (per user
routing).
#server_policy = "Ordered"

Password mode (deprecated in flavor of WebADM Client Policies!)
0: Let OpenOTP automatically handle passwords and concatenation (default).
1: RADIUS Access Request transports LDAP password and Access Challenge transports OTP
password.
2: RADIUS Access Request transports OTP password (no challenge).
3: RADIUS Access Request transports both LDAP and OTP passwords concatenated.
The RADIUS password contains the LDAP password followed by the OTP password.
Requires either password_separator or otp_length setting below.
4: RADIUS Access Request transports both OTP and LDAP passwords concatenated.
The RADIUS password contains the OTP password followed by the LDAP password.
Requires either password_separator or otp_length setting below.
#password_mode = 0

OTP length (deprecated)
With password_mode 3 and 4, radiusd need to know the length of the OTP passwords when
no
password_separator is set in order to locate the OTP and LDAP parts in the
concatenated
password value. The otp_length and password_separator settings cannot be used at the
same time.
#otp_length = 6

Password separator (deprecated)
With password_mode 3 and 4, radiusd requires a separator character when no otp_length
is set
in order to locate the OTP and LDAP parts in the concatenated password value.
#password_separator = "+"

Challenge suffix
Suffix to be added to the challenge message.
#challenge_suffix = ": "

Default domain

Default domain
This domain name can be used to override the default domain on the OpenOTP
configuration.
#default_domain = "mydomain"

Domain separator
This is the separator character to be used when the domain is provided in the
username.
For example if '\' is used then username with domain can be in the form
domain\username.
By default there is no domain sperator.
domain_separator = "\\"

Support ActiveDirectory UPNs
When enabled, the user domain is extracted from the UID value when a Active Directory
User Principal Name (UPN) is provided as usersername (ex. user@domain.com).
In this example domain.com is provided to OpenOTP as domain name.
#upn_domain = yes

Client attribute
This is the RADIUS attribute which contains the client ID to be sent to OpenOTP.
If this attribute is not found then the NAS IP address is sent as client ID.
Multiple attributes can be used in the form "NAS-Identifier,NAS-IP-Address".
By default the NAS-Identifier, NAS-IP-Address and NAS-IPv6-Address attributes are
used.
If Calling-Station-Id or Called-Station-Id is used here and contains a ':' character,
then only
the trailing part after the ':' separator is used.
#client_attribute = "NAS-Identifier"

Source attribute
This is the RADIUS attribute in which the RADIUS client can pass the end user source
IP address to
OpenOTP. Attribute must be of type IPAddr.
By default the source attribute is set to Calling-Station-Id & PaloAlto-Client-
Source-IP.
#source_attribute = "Calling-Station-Id,PaloAlto-Client-Source-IP"

Context attribute
This is the RADIUS attribute in which the RADIUS client can pass the end user device
ID address to
OpenOTP. Attribute must be of type String.
By default the context attribute is not set (ignored).
#context_attribute = "Calling-Station-Id"

Settings attribute (deprecated in flavor of WebADM Client Policies!)
This is the RADIUS attribute in which the RADIUS client can pass user settings to
OpenOTP.
If the attribute is present in the RADIUS request, it will override any existing user
setting
from the user_settings setting above. Attribute must be of type String.
By default the settings attribute is not set (ignored).
#settings_attribute = "Filter-Id"

#settings_attribute = "Filter-Id"

User settings
Fixed list of OpenOTP policy settings to be passed via the OpenOTP API.
#user_settings = "LoginMode=LDAPOTP,OTPType=SMS"

Client certificate (use if OpenOTP is configure with "Require Client Certificate")
#cert_file = "/opt/radiusd/conf/radiusd.pem"
#cert_password = ""

Trusted CA (WebADM CA certificate)
Copy the WebADM CA file in conf/ca.crt and set the ca_file to enforce SSL server
trust.
#ca_file = "/opt/radiusd/conf/ca.crt"

SOAP timeout
This is the SOAP request TCP timeout. Set the RADIUS timeout to a lower value on your
RADIUS client.
If you use OpenOTP Simple-Push login, then you must set the timeout to 30 secs and
you must set the
RADIUS timeout on your client (NAS) to 30 secs.
#soap_timeout = 30

Status cache
When two servers are configured, RadiusBridge can check the server statuses at
regular intervals by
trying TCP socket connections. The status_cache is the polling interval between 10
and 600 seconds.
By default, the server statuses are re-checked every 30 seconds. Use 0 disables the
status requests.
#status_cache = 30

RADIUS reply attributes
This is a fixed list of attribute and values to be sent back to the RADIUS clients in
Access-Accept
packets. The syntax is the standard RADIUS value pairs (ie.
attr1=value1,attr2=value2,...).
Note: The attributes must be present in the local dictionaries (in
lib/dictionaries/).
#reply_attributes = "Juniper-Allow-Commands=\"XXX\",Juniper-Deny-Commands=\"YYY\""

No success/failure message
If set to 'yes', then no RADIUS Reply-Message attribute is sent in the Access-Success
and/or
Access-Failure response. This is useful for some broken RADIUS clients which refuse
the reply
message attributes in the Access-Request responses.
#no_success_message = no
#no_failure_message = no

No response delay
You can configure RB to delay its Access-Reject responses when the OpenOTP server
does not respond.

This is the OpenOTP SOAP endpoint URL(s). And this is the only mandatory RB setting. When WebADM and RB are installed on the

same server, the server URL should be set to http://127.0.0.1:8080/openotp/. If WebADM and RB are installed on different servers

it should use OpenOTP SSL port and be set to https://<WEBADMSERVER>:8443/openotp/ .

It is possible to configure two different server URLs in the form “url1,url2” (separated by a comma), or alternatively, you can

comment the server_url line and configure server_url1 and server_url2. When two servers are configured, you may also choose a

request routing policy as explained below.

does not respond.
Setting a delay allows RADIUS clients to enforce a failover policy if they do not
receive a RADIUS
response within a configured timeout. Without the no_response_delay (RB default) the
client gets a
RADIUS failure response and does also not failover to a secondary server.
#no_response_delay = 15

MS DirectAccess Probe
Enable this setting only if you are using Microsoft VPN with DirectAccess server.
DirectAccess servers check the RADIUS server status via RADIUS probes requests which
are sent to
OpenOTP via Status requests.
#directaccess_probe = no
#daprobe_username = "DAProbeUser"
#daprobe_password = "DAProbePass"

Users with OpenOTP transaction lock disabled
Use ONLY with stress-testing usersw which require concurrent login transactions.
#nolock_usernames = "user1,user2"

Users for which LDAP credentials will be cached in OpenOTP
Use ONLY with system polling users generating a lot of OpenOTP LDAP requests.
#cached_usernames = "user1,user2"

Users to be rejected without sending an OpenOTP request
#denied_usernames = "root"

FIDO-U2F support
Enable U2F over RADIUS with RCDevs vendor-specific U2F dictionary (currently
unsupported).
Uses dictionary attributes from /opt/radiusd/lib/dictionaries/dictionary.rcdevs.
#u2f_support = no

Short RADIUS timeout fix
Enable support for RADIUS servers not supporting the 30 seconds' request timeout
required by
OpenOTP Push Login. You should enable this option if you are using a Cisco ASA VPN
server.
#fix_timeout = no

5.2.1 Server Endpoint URL(s) (server_url)









If two server URLs are defined in server_url, you can optionally configure a request routing policy (ie. the server selection policy).

There are three policies available:

Ordered: The first server is always preferred. When it does not respond, the second server is used.

Balanced: The server is chosen randomly for each request. When it does not respond, the other is used.

Consistent: The server selection depends on the user ID. A request for one specific user is also always routed to the same

server. If it does not respond, the other server is used.

When two servers are configured, RadiusBridge can check the server statuses at regular intervals by sending OpenOTP status

requests. The status_cache is the polling interval between 10 and 600 seconds. By default, the server statuses are re-checked

every 60 seconds. Use the value ʻ0ʼ disables the OpenOTP status request polling mechanism.

The RADIUS protocol can transport one password at a time. But the OpenOTP API supports passing both LDAP and OTP password

in one request (in two different fields). Also, when OpenOTP is used with both LDAP and OTP passwords for the authentication

(i.e. LDAPOTP LoginMode in OpenOTP), several mechanisms can be used with RB:

1. The RADIUS Access-Request transports the LDAP password. Then the RB server issues a RADIUS Access-Challenge and a

RADIUS Challenge-Response request transport the OTP password. The user is also prompted for his OTP after having entered

his LDAP password.

2. The RADIUS Access-Request transports a concatenated form of the LDAP and OTP passwords in the same RADIUS Access-

Request. Multiple concatenation options are available.

Alternatively, RB can work with OpenOTP LDAP-only (i.e. LDAP LoginMode in OpenOTP) and OTP-only (i.e. OTP LoginMode in

OpenOTP). In that case, the RB is able to transport only the LDAP or OTP password in the RADIUS Access-Request.

The password modes supported by RB are as follows :

password_mode = 0: This is the default operating mode where Radius Bridge lets OpenOTP handle the request passwords

automatically. This mode uses the OpenOTP v1.1 SimpleLogin API method. This mode is highly recommended for common

5.2.2 Request Routing Policy (server_policy)

5.2.3 Status Cache Time (status_cache)

5.2.4 Password Mode (password_mode)

 Note

Current versions of the OpenOTP server are able to handle password concatenation at the OpenOTP server level. For this, you

only need to configure a Client Policy for your RADIUS client(s) in WebADM and set the Challenge Support to No in the Application

Settings. You should keep the password_mode to its default value (0) for automatic password decoding. Please look at section 6

for more information about WebADM Client Policies.































integrations.

password_mode = 1: The RADIUS Access-Request transports LDAP password and Access Challenge transports OTP password.

This is the default if the setting is not specified. This mode works with OpenOTP LDAP only and LDAPOTP with challenge.

password_mode = 2: The RADIUS Access-Request transports only the OTP password (no challenge).

password_mode = 3: The RADIUS Access-Request transports both LDAP and OTP passwords concatenated. The RADIUS

password contains the LDAP password followed by the OTP password. This setting requires either password_separator or

otp_length setting below.

password_mode = 4: The RADIUS Access-Request transports both the OTP and LDAP passwords concatenated. The RADIUS

password contains the OTP password followed by the LDAP password. Requires either password_separator or otp_length

setting below.

password_mode = 5: The RADIUS Access-Request transports both user ID and OTP password concatenated. The RADIUS

username contains the user ID followed by the OTP password. Requires either password_separator or otp_length setting

below.

Here is a summary of the possible password policies in RADIUS Bridge:

OpenOTP LDAP password only (LDAP LoginMode):

Use password_mode = 0 (default) or 1

Users provide the LDAP password in the Radius Access-Request.

OpenOTP OTP password only (OTP LoginMode):

Use password_mode = 0 (default) or 2

Users provide the OTP password in the Radius Access-Request.

OpenOTP LDAP+OTP passwords (LDAPOTP LoginMode):

Option 1) With Challenge mode:

Use password_mode = 0 (default) or 1

Users provide the LDAP password in the Radius Access-Request.

Users are prompted for an OTP via a Radius Challenge-Response.

Users provide the OTP password in the Radius Access-Challenge.

Option 2) With concatenated mode (LDAPOTP):

Use password_mode = 3

Users provide the LDAP password followed by the OTP password in the Radius Access-Request.

Option 3) With concatenated mode (OTPLDAP):





Use password_mode = 4

Users provide the OTP password followed by the LDAP password in the Radius Access-Request.

Please look at Appendix A for a more detailed explanation of password modes.

It is recommended to let the default configuration with password_mode 0 for common usage. Password modes 1, 2, 3 and 4

should be used only when necessary. Please look at section 6 for details about client policies. Another solution to force the

OpenOTP login mode on the OpenOTP server is to use the user_settings RB setting explained below.

With password mode 3 and 4, RB need to know the length of the OTP passwords when no password_separator setting is set, in

order to locate the OTP and LDAP parts in the concatenated password value.

This setting is deprecated. OTP length for password de-concatenation should be handled by the OpenOTP server when Challenge

Support is disabled.

With password_mode 3 and 4, RB requires a separator character is needed when no otp_length setting is set in order to locate the

OTP and LDAP parts in the concatenated password value. The default password separator is the ʻ+ʼ character. This setting is

deprecated. OTP de-concatenation is handled by the OpenOTP server and a password separator is not needed anymore.

This is a suffix string to be appended to the challenge messages returned by OpenOTP. In some cases, it can be useful to add ʻ: ʻ

for example to the user prompt, for a better display.

A RADIUS Access-Request does not provide a standard domain attribute. Yet, WebADM Domain names can be passed in the

Radius request as part of the Radius username attribute, by using a Windows NT -like notation (i.e. domain\username or

 Note

The OpenOTP LoginMode and the RB password mode must be consistent. The OpenOTP LoginMode can be set in the OpenOTP

configuration in WebADM and it can be adjusted per LDAP users or groups. And you can create a WebADM Web Service Client

object where you can force a login mode for a specific RADIUS client. For example, you can use password_mode 2 (OTP only) and

create a client policy object in WebADM for your VPN where you set OpenOTP.LoginMode=OTP (in the Priority Settings of the client

object).

5.2.5 OTP Length (otp_length)

 Note

The otp_length and password_separator settings cannot be used at the same time. Password separator is highly preferred as

your users may be configured with different OTP password lengths.

5.2.6 Password Separator (password_separator)

5.2.7 Challenge Suffix (challenge_suffix)

5.2.8 Domain Separator (domain_separator)

username@domain). It is also possible to configure what separator character is used when the domain name is provided in the

RADIUS username with the domain_separator setting.

By default, no separator is used and RB expects only a username and no domain. When the character ʻ@ʻ is used as domain

separator, the domain part is expected to be on the right side of the string in the form username@domain. With any other

separator, the domain is expected to be on the left side in the form domain\username.

If you want to use the character “\” as a separator to provide the credential in the form domain\username, then you must

configure RB with domain_separator = “\”.

Set this setting to Yes if you use ActiveDirectory LDAP with User Principal Names (UPN). UPNs are globally unique login names like

email addresses (ex. user@company.com). The UPN contains the DNS domain as part of the user ID (after the ʻ@ʻ character). With

UPNs, OpenOTP will select the right WebADM Domain based on the UPN domain information. When enabled, RB will pass the UPN

domain suffix (ie. right side of the ʻ@ʻ) as a domain to the OpenOTP API and the whole UPN as username. For example, if the UPN

is user@company.com, then RB will send user@company.com as username and company.com as a domain to OpenOTP.

The upn_domain setting is designed for using Explicit UPNs. If you need Implicit UPNs, then do not enable upn_domain and just

set ʻ@ʻ as domain separator.

It is possible to configure a default_domain in RB to allow users not to provide a domain name if they are part of your default

domain.

5.2.9 UPN Domain Support (upn_domain)

 Note

In WebADM Domains, you can configure the UPN suffixe(s) as Domain Alias in the domain settings.







Active Directory provide two form of UPNs

Explicit UPN (eUPN): This is the value of the user objectʼs userPrincipalName attribute.

Implicit UPN (iUPN): This is constructed by concatenating the value of the user objectʼs samAccountName attribute with the

value of the AD domainʼs FQDN.

5.2.10 Default Domain (default_domain)

 Note

OpenOTP is configured with a default domain in WebADM. Use this setting only if you want to use a default domain different than

the OpenOTP default domain.

mailto:user@company.com
mailto:user@company.com
mailto:user@company.com

With the user_settings, you can pass a fixed list of policy settings to OpenOTP in every request. These settings will have a higher

priority than any setting defined on the users, groups, client policies and OpenOTP configuration.

Only the public OpenOTP settings can be passed in the OpenOTP requests. For example, you can set user_settings =

“LoginMode=OTP,OTPType=TOKEN”. To know the settings names and if they are public, just go to the OpenOTP configuration in

WebADM and put the mouse over one setting name. WebADM will display the real setting name (as to be used in the RB

user_settings) and its scope (public, private, etc…).

It might happen that you want your VPN server to provide a list of OpenOTP user settings as part of the authentication requests.

This is also the RADIUS attribute in which the RADIUS client can pass OpenOTP user settings. If the attribute is present in the

RADIUS request, it will override any existing user_settings value. By default, no attribute is configured. You can safely use Filter-Id

attribute to transport the user settings.

This configuration does not exist anymore in Radius Bridge v1.2.4! The documentation is kept for older versions of Radius

Bridge.

You might need to return a specific attribute to the RADIUS client. For example, you want to return a user role to a Juniper SSL-

VPN. In WebADM, you can set a Reply Data in the OpenOTP user settings. This is also the RADIUS attribute in which RB will return

the content of the OpenOTP Reply Data found in the LDAP user.

For example, the user has a Reply Dataset to MyRole. Then the VPN server will receive a RADIUS attribute Filter-Id=”MyRole”.

 Note

You can configure the default domain for a specific VPN client using a WebADM Client Policy object. This is useful when you need a

different default domain depending on the RADIUS client. For example, you have two VPNs allowing access to users from two

different domains.

5.2.11 User Settings (user_settings)

 Note

This user setting can be set in a WebADM Web Service Client object too. This is the preferred option as you can configure it from

the WebADM interface.

5.2.12 User Settings Attribute (settings_attribute)

5.2.13 Data Attribute (data_attribute)

 Note

This setting is ignored if the data_is_vps setting is set to ʻyesʼ.

This configuration does not exist anymore in Radius Bridge v1.2.4! The documentation is kept for older versions of Radius

Bridge.

You can return several instances of the data attribute by specifying a separator character and set a list of Reply Data in the LDAP

users, separated with the separator character. RB will create one data attributes per Reply Data in the RADIUS response. If no

separator is specified, the Reply Data is copied to one unique data_attribute.

For example, the user has a Reply Dataset to MyRole1, MyRole2. Then the VPN server will receive two RADIUS attributes: Filter-

Id=”MyRole1” and Filter-Id=”MyRole2”.

This configuration does not exist anymore in Radius Bridge v1.2.4! The documentation is keep for older versions of Radius Bridge.

OpenOTP includes a new policy setting called RADIUS Attributes which is used to configure per user or group RADIUS reply

attributes.

If this setting is set to ʻyesʼ, then RB assumes the user Reply Data contain a list of RADIUS attribute-value pairs. In that case, the

RADIUS attributes defined in the Reply Data are created by RB with their values and returned to the RADIUS client.

For example, the user has a Reply Dataset to Juniper-Allow-Commands=“CMD1”, Juniper-DenyCommands=“CMD2”. Then the

VPN server will receive two RADIUS attributes: Juniper-AllowCommands=“CMD1” and Juniper-Deny-Commands=“CMD2”.

RB supports per RADIUS client value-pair filtering. For example, you might want to set different roles for a user depending on the

VPN. In this case, letʼs say you want to use Filter-Id as role attribute on both VPNs but the user a Role1 on VPN1 and Role2 on

VPN2. Then you just set VPN1:Filter-Id=”Role1”, VPN2:Filter-Id=“Role2” in the user Reply Data. The VPN1 server will receive the

RADIUS attributes Filter-Id=”Role1” and the VPN2 server will receive VPN1.FilterId=”Role2”. You can use either character ʻ:ʼ or ʻ.ʼ as

client filter separator.

 Note

The attributes must be present in the local dictionaries (in lib/dictionaries/).

5.2.14 Data Separator (data_separator)

 Note

This setting is ignored if the data_is_vps setting below is set to ʻyesʼ.

 Note

The attributes must be present in the local dictionaries (in lib/dictionaries/).

5.2.15 Data with Value-pair (data_is_vps)

This is a fixed list of static RADIUS attribute value-pairs to be always sent back to the RADIUS clients in the Access-Accept

responses. The values will be combined with the RADIUS reply attributes which are configured in WeBADM. The syntax is the

standard RADIUS value pairs (ie. attr1=value1,attr2=value2,…). Example : reply_vps = “Juniper-Allow

Commands="XXX",JuniperDeny-Commands="YYY"”.

RADIUS Bridge uses this attribute to send the client ID to OpenOTP. This attribute is set to NASIdentifier, NAS-IP-Address and NAS-

IPv6-Address by default (attributes are tried in order). When none of the configured is found, the requestor IP address is sent as

client ID.

The RADIUS client can optionally forward the IP address of the end-user to RadiusBridge. This IP address is used by the OpenOTP

audit and with WebADM location policies defined on Domain and Client Policy configuration objects. The user RADIUS source IP

attribute is not provided by most VPN vendors. Yet, with some VPNs like Cisco ASA use the Calling-Station-Id to provide the user

address. By default, the source attribute is set to Calling-Station-Id.

The attribute must be defined in the RADIUS dictionary and be of type IPAddr or String. The attribute value will be ignored if it does

not contain a valid IP address.

The RADIUS client can optionally forward the device ID (ie. the MAC address of the userʼs connecting device) to RadiusBridge. The

device ID is used by the OpenOTP contextual authentication feature. By default the context attribute is not configured (ignored).

With Cisco Wifi, you may set it to Calling-Station-Id which may provide the MAC address of the client Wifi device. The attribute

must be defined in the RADIUS dictionary and be of type String.

 Note

VPN1 and VPN2 in our example correspond to the NAS-Identifier passed by the RADIUS client, or the IP address if NAS-Identified is

not provided.

 Note

The attributes must be present in the local dictionaries (in lib/dictionaries/).

5.2.16 RADIUS Reply Attributes (reply_attributes)

 Note

The attributes must be present in the local dictionaries (in lib/dictionaries/).

5.2.17 Client ID Attribute (client_attribute)

5.2.18 Source IP Attribute (source_attribute)

5.2.19 Context ID Attribute (context_attribute)

5.2.20 SOAP Timeout (soap_timeout)

This is the OpenOTP SOAP requestsʼ timeout. It should be equal or lower than the RADIUS timeout configured on your RADIUS

client(s). The minimal authorized timeout is 5 seconds. The default timeout is 30 seconds. If you use the OpenOTP Simple-Push

Login method then the timeout value should be set to 30 seconds. If you donʼt use Simple-Push then the timeout value should be

set to 10 seconds.

You can copy your WebADM CAʼs public certificate file, in the Radius Bridge configuration folder and point the ca_file to the

certificate file, if you need to enforce OpenOTP server authentication with SSL. This configuration works only if OpenOTP is a

remote service accessible via SSL.

You can prevent RADIUS Reply-Message attributes to be sent in the Access-Success and/or Access-Failure response. This is useful

for some broken RADIUS clients which refuse the reply message attributes in the Access-Request responses. It should not be used

otherwise.

You can configure RB to delay its Access-Reject responses when the OpenOTP server does not respond. Setting a delay allows the

RADIUS clients to enforce a failover policy if they do not receive a RADIUS response within a configured timeout. Without the

no_response_delay (RB default) the client gets a RADIUS failure response and does also not failover to a secondary server. Use

this feature only if you configure your RADIUS client(s) with several RADIUS servers.

Enable DirectAccess probe ONLY if you are using Microsoft VPN with DirectAccess server! DirectAccess servers check the RADIUS

server status via RADIUS probes requests which are sent to OpenOTP in Status requests. Successful DirectAccess probes return

access-success responses to the Microsoft VPN server. You must also use this setting with extreme caution. You must NEVER

enable probe requests for any other RADIUS client.

Nolock_usernames is the list of usernames for which you want OpenOTP to disable transaction locks. Cached_usernames is the

list of usernames for which you want OpenOTP to cache the login results for a short amount of time. Denied_usernames is the list

of usernames which are immediately denied.

Enable U2F over RADIUS with RCDevs vendor-specific U2F dictionary (currently supported by Viscosity VPN client). Uses dictionary

attributes from /opt/radiusd/lib/dictionaries/dictionary.rcdevs .

Your RADIUS clients (ex. VPN server) must be registered in the /opt/radiusd/conf/clients.conf file to be able to

communicate with the RB server. A client configuration looks this:

5.2.21 CA Certificate file (ca_file)

5.2.22 No Success/Failure Messages (no_success_message & no_failure_message)

5.2.23 No OTP Response Delay (no_response_delay)

5.2.24 MS DirectAccess Probe (directaccess_probe & daprobe_username & daprobe_password)

5.2.25 nolock_usernames & cached_usernames & denied_usernames

5.2.26 U2F Support (u2f_support)

5.3 RADIUS Clients Configuration File

You need to set the IP address of your RADIUS client and the shared RADIUS secret. On the VPN side, you will configure a RADIUS

server with its IP address (ie. the RB server IP address), and you will set the same secret.

As we have seen for password modes, it can be useful to create WebADM client policies for your RADIUS clients. For example, you

might need to set a default domain for a specific VPN or you want to restrict access to users who are members of a specific LDAP

group. You may also need to define different access policies for your VPNs. For example, you want all users to use OTP Login Mode

for a VPN, whatever Login Mode is configured for the user or in OpenOTP. For all these reasons, you can create WebADM Web

Service Client objects. A WebADM Web Service Client object can be defined if you need to assign an access control policy for a

specific client application (which uses the SOAP or RADIUS APIs), or if you want to force some WebADM application settings for a

client application. You can also define per-client application profiles in WebADM using Client objects.

By defining a Web Service Client, you can, for example, restrict access to the Client application for some LDAP authorized groups

or prevent some groups to use the application. You can even restrict the application to work with some specific WebADM Domains.

Another feature of the Client is that you can define some Web Application settings which will always be enforced for the client

application whatever setting is set in the users or its groups. For example, you want one VPN to authenticate users through

OpenOTP with OTP only passwords and Token whatever policy is defined for the user, and you want your internal systems to

authenticate users with LDAP only.

To create a Client object, you must know your client application ID. The WebADM Client object must have the same name as the

client ID. The ID is typically the Client name that appears in the WebADM Log Viewer for Web Services. The Client ID is generally

provided in the client requests in the client SOAP attribute. With RADIUS, it is the NAS-Identifier. If this information is not provided

by the client, WebADM will use the RADIUS client IP Address as a client name.

When a WebADM Client policy object is configured with Challenge Support disabled and the user policy is set to LDAPOTP, then

OpenOTP assumes the passwords are provided in the concatenated form. OpenOTP will also de-concatenates the LDAP and OTP

passwords which must be provided with the LDAP password followed by the OTP password (without any separator character).

This new feature can replace the RadiusBridge password_mode configuration for concatenated passwords. You can simply let RB

with its default password_mode (mode 0) and let OpenOTP do the job.

client my_vpn {
 ipaddr 192.168.0.10=
 secret testing123=
}

 Note

Always prefer setting no RADIUS retries (retries=0) on the RADIUS configuration of your VPN when you use OpenOTP challenge

mode.

6. Radius Bridge and WebADM Client Policies

6.1 Concatenated Password with Client Policies

RB supports PPTP and L2TP VPN servers with PAP authentication only. CHAP and similar password protocols using hashed values

are not supported. If you use PPTP with VPN clients such as Windows integrated VPN client, be sure to configure the VPN client

and server with PAP authentication.

Radius authentication can fail for many reasons, the following chapters describe how to troubleshoot it.

Check if the OpenOTP RADIUS Bridge service is running:

7. PPTP/L2TP VPNs

 Note

PAP uses a cleartext password transport is not recommend if you use OpenOTP with LDAP passwords. In this case, you should

consider L2TP (PPP over IPSec) with PAP and not PPTP with PAP. With L2TP the VPN is established inside an IPSec channel and

the PAP password is secured. A PPTP VPN with PAP remains acceptable if you use OpenOTP with OTP only since an OTP password

is one-time and cannot be replayed.

 Note

The PAP concern is relevant only with PPTP VPN. Common VPN vendor like Cisco, Juniper, Checkpoint, F5, etc… do not rely on the

PAP protocol.

8. Troubleshooting

8.1 Radiusd Status Check

root@rcvm8 ~[]# /opt/radiusd/bin/radiusd status
OpenOTP RADIUS Bridge is running with PID 1635.
root@rcvm8 ~[]# systemctl status radiusd

● radiusd.service - OpenOTP Radius Bridge
 Loaded: loaded /usr/lib/systemd/system/radiusd.service; enabled; vendor preset:
disabled

(
)

>>>> NOTE
 Active: active running since Tue 2020-03-31 18:42:35 CEST; days ago() 2
NOTE <<<<

 Process: ExecStart /opt/radiusd/bin/radiusd start code exited,
status 0/SUCCESS

1024 = (=
=)

 Main PID: rcdevs-radiusd1635 ()
 Tasks: : 115016 (limit)
 Memory: 85.9M
 CGroup: /system.slice/radiusd.service
 └─1635 rcdevs-radiusd

Check if the OpenOTP RADIUS Bridge service rcdevs-radius is listening on right IP Address and Port. May need to install

the package net-tools to run the command netstat .

root@rcvm8 ~[]# yum install net-tools
...
Installed:
 net-tools-2.0-0.51.20160912git.el8.x86_64

Complete!
root@rcvm8 ~[]# netstat -tulpn

Active Internet connections only servers()
Proto Recv-Q Send-Q Local Address Foreign Address State
PID/Program name
tcp 0.0.0.0:5355 0.0.0.0:* LISTEN
1657/systemd-resolv

0 0

tcp 0.0.0.0:10636 0.0.0.0:* LISTEN
1208/rcdevs-ldproxy

0 0

tcp 0.0.0.0:8080 0.0.0.0:* LISTEN
2032/webadm-httpd

0 0

tcp 0.0.0.0:80 0.0.0.0:* LISTEN
2032/webadm-httpd

0 0

>>>> NOTE
tcp 0.0.0.0:1812 0.0.0.0:* LISTEN
24467/rcdevs-radius

0 0

NOTE <<<<

tcp 0.0.0.0:10389 0.0.0.0:* LISTEN
1208/rcdevs-ldproxy

0 0

tcp 0.0.0.0:22 0.0.0.0:* LISTEN
1023/sshd

0 0

tcp 0.0.0.0:8443 0.0.0.0:* LISTEN
2032/webadm-httpd

0 0

tcp 0.0.0.0:443 0.0.0.0:* LISTEN
2032/webadm-httpd

0 0

tcp 0.0.0.0:636 0.0.0.0:* LISTEN
1284/rcdevs-slapd

0 0

tcp 0.0.0.0:4000 0.0.0.0:* LISTEN
1994/webadm-session

0 0

tcp 0.0.0.0:389 0.0.0.0:* LISTEN
1284/rcdevs-slapd

0 0

tcp 0.0.0.0:5000 0.0.0.0:* LISTEN
1992/webadm-rsignd

0 0

tcp6 :::3306 :::* LISTEN
1138/mysqld

0 0

tcp6 :::5355 :::* LISTEN
1657/systemd-resolv

0 0

tcp6 :::22 :::* LISTEN
1023/sshd

0 0

tcp6 :::4000 :::* LISTEN 0 0

Please check if the ports are not blocked by a firewall with the command

telnet <webadm server> <port number> and verify radiusd authentication with

tcpdump -i any port 1812 .

tcp6 :::4000 :::* LISTEN
1994/webadm-session

0 0

udp 0.0.0.0:18120 0.0.0.0:*
24467/rcdevs-radius

0 0

udp 0.0.0.0:1812 0.0.0.0:*
24467/rcdevs-radius

0 0

udp 0.0.0.0:1813 0.0.0.0:*
24467/rcdevs-radius

0 0

udp 127.0.0.53:53 0.0.0.0:*
1657/systemd-resolv

0 0

udp 0.0.0.0:5355 0.0.0.0:*
1657/systemd-resolv

0 0

udp 127.0.0.1:323 0.0.0.0:*
957/chronyd

0 0

udp 0.0.0.0:1645 0.0.0.0:*
24467/rcdevs-radius

0 0

udp 0.0.0.0:1646 0.0.0.0:*
24467/rcdevs-radius

0 0

udp6 :::5355 :::*
1657/systemd-resolv

0 0

udp6 ::1:323 :::*
957/chronyd

0 0

root@rcvm8 ~[]#

8.2 Connectivity Check

root@centos8-client ~[]# telnet 192.168.3.232 1812
Trying 192.168.3.232...

>>>> NOTE
Connected to 192.168.3.232.
Escape character is .'^]'
NOTE <<<<

Connection closed by foreign host.

Example of a successful radius authentication:

root@rcvm8 ~[]# tcpdump -i any port 1812 -vv
tcpdump: listening on any, link-type LINUX_SLL Linux cooked , capture size
bytes

() 262144

13:05:22.645509 IP tos 0x10, ttl 64, id 3618, offset 0, flags DF , proto TCP 6 ,
length 60

([] ()
)

 192.168.3.214.60210 > rcvm8.rcdevs.local.radius: Flags S , cksum 0x5db7 correct ,
seq 1393734890, win 29200, options mss 1460,sackOK,TS val ecr 0,nop,wscale
7 , length

[] ()
[2181395168

] 0
13:05:22.645988 IP tos 0x0, ttl 64, id 44767, offset 0, flags none , proto TCP 6 ,
length 60

([] ()
)

 rcvm8.rcdevs.local.radius > 192.168.3.214.60210: Flags S. , cksum 0x893d
incorrect -> 0x4f50 , seq 3386925890, ack 1393734891, win 28960, options mss

1460,sackOK,TS val ecr 2181395168,nop,wscale 7 , length

[]
() [

4022334050] 0
13:05:22.646205 IP tos 0x10, ttl 64, id 3619, offset 0, flags DF , proto TCP 6 ,
length 52

([] ()
)

 192.168.3.214.60210 > rcvm8.rcdevs.local.radius: Flags . , cksum 0xee56 correct ,
seq 1, ack 1, win 229, options nop,nop,TS val ecr 4022334050 , length

[] ()
[2181395169] 0

13:05:22.647209 IP tos 0x0, ttl 64, id 44768, offset 0, flags none , proto TCP 6 ,
length 52

([] ()
)

 rcvm8.rcdevs.local.radius > 192.168.3.214.60210: Flags F. , cksum 0x8935
incorrect -> 0xee56 , seq 1, ack 1, win 227, options nop,nop,TS val ecr

2181395169 , length

[]
() [4022334051

] 0
13:05:22.647350 IP tos 0x10, ttl 64, id 3620, offset 0, flags DF , proto TCP 6 ,
length 52

([] ()
)

 192.168.3.214.60210 > rcvm8.rcdevs.local.radius: Flags F. , cksum 0xee52
correct , seq 1, ack 2, win 229, options nop,nop,TS val ecr 4022334051 ,

length

[]
() [2181395170]

0
13:05:22.647389 IP tos 0x0, ttl 64, id 44769, offset 0, flags none , proto TCP 6 ,
length 52

([] ()
)

 rcvm8.rcdevs.local.radius > 192.168.3.214.60210: Flags . , cksum 0x8935 incorrect
-> 0xee53 , seq 2, ack 2, win 227, options nop,nop,TS val ecr 2181395170 ,
length

[] (
) [4022334052]

0

If the RADIUS Bridge is running and reachable on the correct address and port but authentications still fail, you can run it in debug

mode using the below steps. This will show the detailed RADIUS authentication flow and any errors.

root@rcvm8 ~[]# /opt/radiusd/bin/radtest test-user localhost:1812 testing123
Enter password: ********
Result: Success
Sent Access-Request Id from 0.0.0.0:45386 to 127.0.0.1:1812 length User-Name: 37 58
"test-user"
User-Password: "test1234"
NAS-Identifier: "RadTest"
Cleartext-Password: "test1234"

>>>> NOTE
Received Access-Accept Id from 127.0.0.1:1812 to 127.0.0.1:45386 length Reply-
Message:

37 44
"Authentication success"

NOTE <<<<

root@rcvm8 ~[]#

root@rcvm8 ~[]# tcpdump -i any port 1812 -vv
tcpdump: listening on any, link-type LINUX_SLL Linux cooked , capture size
bytes

() 262144

12:11:27.590459 IP tos 0x0, ttl 64, id 13772, offset 0, flags none , proto UDP 17 ,
length 86

([] ()
)

 localhost.55261 > localhost.radius: bad udp cksum 0xfe55 -> 0x9692! RADIUS,
length:

[]
58

 Access-Request 1 , id: 0xdd, Authenticator: b9cc3a8a669869cabaf009555a702080()
 User-Name Attribute 1 , length: 11, Value: -user() test
 0x0000: 2d75 7465 7374 7365 72
 User-Password Attribute 2 , length: 18, Value:()
 0x0000: 79c7 cae6 9c54 d83b 7c4a cfa8 3f7b2598
 NAS-Identifier Attribute 32 , length: 9, Value: RadTest()
 0x0000: 5261 6454 6573 74
12:11:27.631611 IP tos 0x0, ttl 64, id 13792, offset 0, flags none , proto UDP 17 ,
length 72

([] ()
)

 localhost.radius > localhost.55261: bad udp cksum 0xfe47 -> 0x86a7! RADIUS,
length:

[]
44

 Access-Accept 2 , id: 0xdd, Authenticator: 9901e9de1a3d690a092f860437e575ea()
 Reply-Message Attribute 18 , length: 24, Value: Authentication success()
 0x0000: 656e 6f6e 4175 7468 7469 6361 7469 2073
 0x0010: 7563 6365 7373

8.3 Debug Mode

 WARNING

Starting the OpenOTP RADIUS Bridge service in debug mode shows all passwords in clear text in the debug terminal!

root@rcvm8 ~[]# /opt/radiusd/bin/radiusd stop
Stopping OpenOTP RADIUS Bridge... Ok
root@rcvm8 ~[]# systemctl status radiusd

● radiusd.service - OpenOTP Radius Bridge
 Loaded: loaded /usr/lib/systemd/system/radiusd.service; enabled; vendor preset:
disabled

(
)

>>>> NOTE
 Active: failed Result: signal since Fri 2020-04-03 11:21:24 CEST; 3s ago()
NOTE <<<<

 Process: ExecStart /opt/radiusd/bin/radiusd start code exited,
status 0/SUCCESS

1024 = (=
=)

 Main PID: code killed, signal ABRT1635 (= =)

Apr 11:21:24 rcvm8.rcdevs.local systemd 1 : radiusd.service: Main process exited,
code killed, status>

03 []
=

Apr 11:21:24 rcvm8.rcdevs.local systemd 1 : radiusd.service: Failed with result
.

03 []
'signal'
root@rcvm8 ~[]# /opt/radiusd/bin/radiusd debug

Checking support 32bit binaries... Okfor
Checking server configuration... Ok
Starting OpenOTP RADIUS Bridge debug mode...
FreeRADIUS Version 3.0.20
Copyright C 1999-2019 The FreeRADIUS server project and contributors()
There is NO warranty; not even MERCHANTABILITY or FITNESS FOR Afor
PARTICULAR PURPOSE
You may redistribute copies of FreeRADIUS under the terms of the
GNU General Public License
For more information about these matters, see the file named COPYRIGHT
Starting - reading configuration files ...
including dictionary file /opt/radiusd/lib/dictionaries/dictionary
including dictionary file /opt/radiusd/lib/dictionaries/dictionary.dhcp
including dictionary file /opt/radiusd/lib/dictionaries/dictionary.vqp
including configuration file /opt/radiusd/lib/radiusd.ini
including configuration file /opt/radiusd/conf/clients.conf
including configuration file /opt/radiusd/conf/radiusd.conf
main {
 security {
 user = "radiusd"
 group = "radiusd"
 allow_core_dumps no=
...
Listening on auth address * port bound to server default1812
Listening on auth proto tcp address * port bound to server default1812
Listening on auth address * port bound to server default1645





Logs example

Radius Client (Radtest) IP is 192.168.3.54

Radius Bridge server IP is 192.168.3.64

Radius client output :

Radius Bridge server debug output :

Listening on auth address * port bound to server default1645
Listening on acct address * port bound to server default1813
Listening on acct address * port bound to server default1646
Listening on status address * port bound to server default18120
Listening on file /opt/radiusd/temp/radiusd.sockcommand
Ready to process requests

8.4 Bad format or wrong RADIUS secret / Shared secret is incorrect

[root@radius_cli ~]# /opt/radiusd/bin/radtest Administrator 192.168.3.64:1812
testing1234
Enter password: ********
(0) Reply verification failed: Received Access-Reject packet home
192.168.3.64 1812 with invalid Response Authenticator! (Shared is
incorrect.)

from server
 port secret

When that kind of error happens, it comes from a wrong Radius shared secret between Radius client and Radius Bridge.

Check the secret configured for this radius client on Radius Bridge server in /opt/radiusd/conf/clients.conf :

I used testing1234 as secret on my radius client during the authentition. That is why it failed.

Note : If you use special characters in your Radius secret, then we advise to configure the secret in clients.conf between

simple quotes like below :

To use that secret with radtest, keep quotes (else $ character will be interpreted by bash and it will fail) :

(0) Received Access-Request Id 186 from 192.168.3.54:45025 to 192.168.3.64:1812 length
62
(0) User-Name = "Administrator"
(0) User-Password = "T\\q\362\252ż\204\352:\177u;\241\205\243"
(0) NAS-Identifier = "RadTest"
(0) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
(0) authorize {
(0) eap: No EAP-Message, not doing EAP
(0) [eap] = noop
(0) pap: WARNING: No "known good" password found for the user. Not setting Auth-Type
(0) pap: WARNING: Authentication will fail unless a "known good" password is available
(0) [pap] = noop
rlm_openotp: Invalid "User-Password" attribute (bad format or wrong RADIUS secret)
(0) [openotp] = invalid
(0) } # authorize = invalid
(0) Invalid user: [Administrator] (from client any port 0)
(0) Using Post-Auth-Type Reject
(0) Post-Auth-Type sub-section not found. Ignoring.
(0) Login incorrect: [Administrator] (from client any port 0)
(0) Sent Access-Reject Id 186 from 192.168.3.64:1812 to 192.168.3.54:45025 length 0
(0) Finished request

client 192.158.3.54 {
 ipaddr 192.168.3.65=
 secret testing123=
}

client any {
 ipaddr 192.168.3.65=
 secret = 'testing123$!'
}

Radius Bridge output :

[root@radius_cli ~]# /opt/radiusd/bin/radtest Administrator 192.168.3.64:1812
'testing123$!'
Enter password: ********
(0) -: Expected Access-Accept got Access-Challenge
Result: Challenge
Session: 6a66626f47737239716371397a6e6f45
Enter your TOKEN password: 324032
Result: Success
Sent Access-Request Id 207 from 0.0.0.0:46922 to 192.168.3.64:1812 length 80 User-Name:
"Administrator"
User-Password: "324032"
State: 0x6a66626f47737239716371397a6e6f45 NAS-Identifier: "RadTest"
Cleartext-Password: "324032"
Received Access-Accept Id 207 from 192.168.3.64:1812 to 192.168.3.54:46922 length 44
Reply-Message: "Authentication success"

(0) Received Access-Request Id 124 from 192.168.3.54:41692 to 192.168.3.64:1812 length
62
(0) User-Name = "Administrator"
(0) User-Password = "password"
(0) NAS-Identifier = "RadTest"
(0) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
(0) authorize {
(0) eap: No EAP-Message, not doing EAP
(0) [eap] = noop
(0) pap: WARNING: No "known good" password found for the user. Not setting Auth-Type
(0) pap: WARNING: Authentication will fail unless a "known good" password is available
(0) [pap] = noop
(0) [openotp] = ok
(0) } # authorize = ok
(0) Found Auth-Type = OTP
(0) # Executing group from file /opt/radiusd/lib/radiusd.ini
(0) Auth-Type OTP {
rlm_openotp: Found client ID attribute with value "RadTest"
rlm_openotp: Found source IP attribute with value ""
rlm_openotp: Found device ID attribute with value ""
rlm_openotp: Found client IP attribute with value ""
rlm_openotp: Sending openotpSimpleLogin request
rlm_openotp: OpenOTP authentication challenge
rlm_openotp: Reply message: Enter your TOKEN password
rlm_openotp: State: jfboGsr9qcq9znoE
rlm_openotp: Sending Access-Challenge
(0) [openotp] = handled
(0) } # Auth-Type OTP = handled
(0) Using Post-Auth-Type Challenge
(0) Post-Auth-Type sub-section not found. Ignoring.

For other Radius clients like Netscaler, F5, Palo Alto… the simple quotes must not be put in the secret field of your AAA Radius

Server definition.

Below, the OpenOTP logs for the previous authentication in /opt/webadm/logs/webadm.log

(0) Sent Access-Challenge Id 124 from 192.168.3.64:1812 to 192.168.3.54:41692 length 0
(0) State := 0x6a66626f47737239716371397a6e6f45
(0) Reply-Message := "Enter your TOKEN password"
(0) Session-Timeout := 6908576
(0) Finished request
Waking up in 9.9 seconds.
(0) Cleaning up request packet ID 124 with timestamp +10
Ready to process requests
(1) Received Access-Request Id 207 from 192.168.3.54:46922 to 192.168.3.64:1812 length
80
(1) User-Name = "Administrator"
(1) User-Password = "324032"
(1) State = 0x6a66626f47737239716371397a6e6f45
(1) NAS-Identifier = "RadTest"
(1) session-state: No cached attributes
(1) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
(1) authorize {
(1) eap: No EAP-Message, not doing EAP
(1) [eap] = noop
(1) pap: WARNING: No "known good" password found for the user. Not setting Auth-Type
(1) pap: WARNING: Authentication will fail unless a "known good" password is available
(1) [pap] = noop
(1) [openotp] = ok
(1) } # authorize = ok
(1) Found Auth-Type = OTP
(1) # Executing group from file /opt/radiusd/lib/radiusd.ini
(1) Auth-Type OTP {
rlm_openotp: Found client ID attribute with value "RadTest"
rlm_openotp: Found source IP attribute with value ""
rlm_openotp: Found device ID attribute with value ""
rlm_openotp: Found client IP attribute with value ""
rlm_openotp: Found state attribute "State" with value "jfboGsr9qcq9znoE" (string)
rlm_openotp: Sending openotpChallenge request
rlm_openotp: OpenOTP authentication succeeded
rlm_openotp: Reply message: Authentication success
rlm_openotp: Sending Access-Accept
(1) [openotp] = ok
(1) } # Auth-Type OTP = ok
(1) Login OK: [Administrator] (from client any port 0)
(1) Sent Access-Accept Id 207 from 192.168.3.64:1812 to 192.168.3.54:46922 length 0
(1) Reply-Message := "Authentication success"
(1) Finished request

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO New openotpSimpleLogin SOAP
request
[] [] []

request
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO > Username: Administrator[] [] []
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO > Password: xxxxxxxx[] [] []
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO > Client ID: RadTest[] [] []
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO > Options: RADIUS,-U2F[] [] []
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Registered openotpSimpleLogin

request
[] [] []

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Ignoring memberof values
user out of domain group search base
[] [] [] 2 for

'CN=Administrator,CN=Users,DC=yorcdevs,DC=eu' ()
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Resolved LDAP user:

CN Administrator,CN Users,DC yorcdevs,DC eu
[] [] []

= = = =
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Resolved LDAP groups: group

policy creator owners,domain admins,enterprise admins,schema admins,denied rodc
password replication group

[] [] []

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Using SQL server [] [] [] 'SQL Server'
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Using Session server [] [] [] 'Session

Server'
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Started transaction lock

user
[] [] [] for

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Found user fullname:
Administrator
[] [] []

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Found user emails:
Administrator@yorcdevs.eu
[] [] [] 1

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Found user settings:
LoginMode LDAPOTP,OTPType TOKEN,PushLogin Yes,LockTimer 0,MaxTries 3,BlockTime 0,ChallengeMode
1:HOTP-SHA1-6:QN06-
T1M,DeviceType FIDO2,SMSType Normal,SMSMode Ondemand,MailMode Ondemand,PrefetchExpire 10,LastOTPTime

 Items

[] [] [] 47
= = = = = =

= = = = =
[1]
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Found user data:

TokenType,TokenKey,TokenState,TokenID,TokenSerial,Device1Type,Device1Name,Device1Data,Device1State
[] [] [] 9

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Found registered OTP token
TOTP

[] [] [] 1
()
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Requested login factors: LDAP &

OTP
[] [] []

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO LDAP password Ok[] [] []
2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Authentication challenge

required
[] [] []

2020-04-17 18:24:04 192.168.3.64 OpenOTP:85XTWHCO Using Push server [] [] [] 'Push Server'
2020-04-17 18:24:05 192.168.3.64 OpenOTP:85XTWHCO Sent push notification

token
[] [] [] for

#1
2020-04-17 18:24:05 192.168.3.64 OpenOTP:85XTWHCO Waiting seconds mobile

response
[] [] [] 27 for

2020-04-17 18:24:32 192.168.3.64 OpenOTP:85XTWHCO Started OTP authentication
session of ID jfboGsr9qcq9znoE valid seconds
[] [] []

for 90
2020-04-17 18:24:32 192.168.3.64 OpenOTP:85XTWHCO Sent login challenge response[] [] []
2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO New openotpChallenge SOAP

request
[] [] []

2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO > Username: Administrator[] [] []
2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO > Session: jfboGsr9qcq9znoE[] [] []
2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO > OTP Password: xxxxxx[] [] []
2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO Registered openotpChallenge

request
[] [] []

In this case, the IP address is for the client to connect is wrong. Please check the file

/opt/radiusd/conf/clients.conf .

request
2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO Found authentication session

started 2020-04-17 18:24:04
[] [] []

2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO Started transaction lock
user
[] [] [] for

2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO PUSH password Ok token [] [] [] (#1)
2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO Updated user data[] [] []
2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO Sent terminate notification

token
[] [] [] for

#1
2020-04-17 18:24:43 192.168.3.64 OpenOTP:85XTWHCO Sent login success response[] [] []

8.5 Wrong Client Definition

root@rcvm8 ~[]# /opt/radiusd/bin/radtest test-user localhost:1812 testing123
Enter password: ********

>>>> NOTE
0 No reply from server ID socket () for 141 3

NOTE <<<<

Result: Error
root@rcvm8 ~[]#

root@rcvm8 ~[]# /opt/radiusd/bin/radiusd debug
...
Listening on auth address * port bound to server default1812
Listening on auth proto tcp address * port bound to server default1812
Listening on auth address * port bound to server default1645
Listening on acct address * port bound to server default1813
Listening on acct address * port bound to server default1646
Listening on status address * port bound to server default18120
Listening on file /opt/radiusd/temp/radiusd.sockcommand
Ready to process requests

>>>> NOTE
Ignoring request to auth address * port bound to server default from unknown
client 127.0.0.1 port proto udp

1812
39193

NOTE <<<<

Ready to process requests

8.6 Missing MFA Enrolment

In this example, the radius authentication is set to LDAP and OTP. However, the user doesnʼt have yet a second factor enrolled.

root@rcvm8 ~[]# /opt/radiusd/bin/radtest test-user localhost:1812 testing123
Enter password: ********
0 -: Expected Access-Accept got Access-Reject()

Result: Failed
Sent Access-Request Id from 0.0.0.0:58793 to 127.0.0.1:1812 length User-Name: 89 58
"test-user"
User-Password: "test1234"
NAS-Identifier: "RadTest"
Cleartext-Password: "test1234"

>>>> NOTE
Received Access-Reject Id from 127.0.0.1:1812 to 127.0.0.1:58793 length Reply-
Message:

89 81
"Account missing required data or MFA enrolment needed"

NOTE <<<<

Error-Cause: 26985728
root@rcvm8 ~[]#

root@rcvm8 ~[]# /opt/radiusd/bin/radiusd debug
...
Listening on auth address * port bound to server default1812
Listening on auth proto tcp address * port bound to server default1812
Listening on auth address * port bound to server default1645
Listening on acct address * port bound to server default1813
Listening on acct address * port bound to server default1646
Listening on status address * port bound to server default18120
Listening on file /opt/radiusd/temp/radiusd.sockcommand
Ready to process requests
0 Received Access-Request Id from 127.0.0.1:58793 to 127.0.0.1:1812 length () 89 58
0 User-Name () = "test-user"
0 User-Password () = "test1234"
0 NAS-Identifier () = "RadTest"
0 () # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
0 authorize () {
0 eap: No EAP-Message, not doing EAP()
0 eap noop() [] =
0 pap: WARNING: No password found the user. Not setting Auth-Type() "known good" for
0 pap: WARNING: Authentication will fail unless a password is available() "known good"
0 pap noop() [] =
0 openotp ok() [] =
0 () } # authorize = ok
0 Found Auth-Type OTP() =
0 () # Executing group from file /opt/radiusd/lib/radiusd.ini
0 Auth-Type OTP () {

rlm_openotp: Found client ID attribute with value "RadTest"
rlm_openotp: Found IP attribute with value source ""
rlm_openotp: Found device ID attribute with value ""

rlm_openotp: Found client IP attribute with value ""
rlm_openotp: Sending openotpSimpleLogin request
rlm_openotp: OpenOTP authentication failed

>>>> NOTE
rlm_openotp: Reply message: Account missing required data or MFA enrolment needed
NOTE <<<<

rlm_openotp: Sending Access-Reject
0 openotp reject() [] =
0 () } # Auth-Type OTP = reject
0 Failed to authenticate the user()
0 Using Post-Auth-Type Reject()
0 Post-Auth-Type sub-section not found. Ignoring.()
0 Login incorrect: -user from client any port 0() [test] ()
0 Sent Access-Reject Id from 127.0.0.1:1812 to 127.0.0.1:58793 length () 89 0
0 Reply-Message : () = "Account missing required data or MFA enrolment needed"
0 Error-Cause : () = 26985728
0 Finished request()

Waking up 9.9 seconds.in
0 Cleaning up request packet ID with timestamp +8() 89

Ready to process requests

root@rcvm8 ~[]# tail -f /opt/webadm/logs/webadm.log
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ New openotpSimpleLogin SOAP

request
[] [] []

2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ > Username: -user[] [] [] test
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ > Password: xxxxxxxx[] [] []
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ > Client ID: RadTest[] [] []
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ > Options: RADIUS,-U2F[] [] []
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ Registered openotpSimpleLogin

request
[] [] []

2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ Resolved LDAP user: cn -
user,o Root
[] [] [] =test

=
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ Started transaction lock user[] [] [] for
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ Found user fullname: -user[] [] [] test
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ Found user settings:

LoginMode LDAPOTP,OTPType TOKEN,ChallengeMode Yes,ChallengeTimeout 90,OTPLength 6,MobileTimeout
1:HOTP-SHA1-6:QN06-
T1M,DeviceType FIDO2,SMSType Normal,SMSMode Ondemand,MailMode Ondemand,PrefetchExpire 10,LastOTPTime

[] [] [] 46
= = = = =

= = = = =

>>>> NOTE
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ User has no OTP token registered[] [] []

NOTE <<<<

2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ No usable login method found[] [] []
2020-04-03 11:54:06 127.0.0.1 OpenOTP:2WL6CTJJ Sent failure response[] [] []

Only PAP or EAP-TTLS authentication is supported for password authentication. CHAP and similar password protocols using

hashed values are not supported. If you Windows clients such as Windows integrated VPN client, be sure to configure the VPN

client and server with PAP authentication.

Itʼs possible to configure radius retuned attributes through WebADM GUI for specific users, groups or clients applications. Please

refer to Radius Attributes documentation for how to configure them. RADIUS return attributes must comply with the RADIUS

dictionaries stored in /opt/radiusd/lib/dictionaries/ . If they do not, the authentication will fail. In the

example below, RADIUS Bridge receives return attribute ASA-VLAN="string" , which is not correct as the attribute is

defined as integer.

8.7 Incorrect Protocol

root@rcvm8 ~[]# /opt/radiusd/bin/radiusd debug
...
Listening on auth address * port bound to server default1812
Listening on auth proto tcp address * port bound to server default1812
Listening on auth address * port bound to server default1645
Listening on acct address * port bound to server default1813
Listening on acct address * port bound to server default1646
Listening on status address * port bound to server default18120
Listening on file /opt/radiusd/temp/radiusd.sockcommand
Ready to process requests
0 NAS-IP-Address 10.10.10.10() =
0 NAS-Port () = 1
0 User-Name () = "test-user"

>>>> NOTE
0 CHAP-Challenge 0x111111111111111111111111() =
0 CHAP-Password 0x222222222222222222222**() =

NOTE <<<<

0 Message-Authenticator 0x33333333333333333333333() =
0 () # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
0 authorize () {
0 eap: No EAP-Message, not doing EAP()
0 eap noop() [] =
0 pap: WARNING: No password found the user. Not setting Auth-Type() "known good" for
0 pap: WARNING: Authentication will fail unless a password is available() "known good"
0 pap noop() [] =

rlm_openotp: Invalid attribute bad format or wrong RADIUS secret"User-Password" ()
...

8.8 Radius Returned Attributes

8.8.1 Invalid RADIUS return attributes

https://docs.rcdevs.com/howtos/radius_attrs/radius_attrs/

For this test, I configured Citrix-User-Groups as Radius returned attribute with a mapping to memberof attribute

of my Administrator account.

Radius Client output :

root@rcvm8 ~[]# /opt/radiusd/bin/radiusd debug
...
rlm_openotp: OpenOTP authentication succeeded

>>>> NOTE
rlm_openotp: Reply Data: ASA-VLAN="string"
rlm_openotp: Invalid Reply Data invalid value-pairs format or attribute not
dictionary

(in
)

NOTE <<<<

3 openotp fail() [] =
3 () } # Auth-Type OTP = fail
3 Failed to authenticate the user()
3 Using Post-Auth-Type Reject()
3 Post-Auth-Type sub-section not found. Ignoring.()
3 Login incorrect: from client any port 0() [test] ()
3 Sent Access-Reject Id from 127.0.0.1:1812 to 127.0.0.1:34295 length () 52 0
3 Finished request()

8.8.2 Check Radius Returned Attributes

[root@radius_cli ~]# /opt/radiusd/bin/radtest Administrator 192.168.3.64:1812
'testing123$!'
Enter password: ********
Result: Success
Sent Access-Request Id 55 from 0.0.0.0:60026 to 192.168.3.64:1812 length 62 User-Name:
"Administrator"
User-Password: "password"
NAS-Identifier: "RadTest"
Cleartext-Password: "password"
Received Access-Accept Id 55 from 192.168.3.64:1812 to 192.168.3.54:60026 length 410
Citrix-User-Groups: "CN=Organization Management,OU=Microsoft Exchange Security
Groups,DC=yorcdevs,DC=eu"
Citrix-User-Groups: "CN=Group Policy Creator Owners,CN=Users,DC=yorcdevs,DC=eu"
Citrix-User-Groups: "CN=Domain Admins,CN=Users,DC=yorcdevs,DC=eu"
Citrix-User-Groups: "CN=Enterprise Admins,CN=Users,DC=yorcdevs,DC=eu"
Citrix-User-Groups: "CN=Schema Admins,CN=Users,DC=yorcdevs,DC=eu"
Citrix-User-Groups: "CN=Administrators,CN=Builtin,DC=yorcdevs,DC=eu"
Reply-Message: "Authentication success"

As you can see, groups of my Administrator account are well returned.

Radius Bridge output :

(2) Received Access-Request Id 55 from 192.168.3.54:60026 to 192.168.3.64:1812 length
62
(2) User-Name = "Administrator"
(2) User-Password = "password"
(2) NAS-Identifier = "RadTest"
(2) # Executing section authorize from file /opt/radiusd/lib/radiusd.ini
(2) authorize {
(2) eap: No EAP-Message, not doing EAP
(2) [eap] = noop
(2) pap: WARNING: No "known good" password found for the user. Not setting Auth-Type
(2) pap: WARNING: Authentication will fail unless a "known good" password is available
(2) [pap] = noop
(2) [openotp] = ok
(2) } # authorize = ok
(2) Found Auth-Type = OTP
(2) # Executing group from file /opt/radiusd/lib/radiusd.ini
(2) Auth-Type OTP {
rlm_openotp: Found client ID attribute with value "RadTest"
rlm_openotp: Found source IP attribute with value ""
rlm_openotp: Found device ID attribute with value ""
rlm_openotp: Found client IP attribute with value ""
rlm_openotp: Sending openotpSimpleLogin request
rlm_openotp: OpenOTP authentication succeeded
rlm_openotp: Reply Data: Citrix-User-Groups="CN=Organization Management,OU=Microsoft
Exchange Security Groups,DC=yorcdevs,DC=eu",Citrix-User-Groups="CN=Group Policy Creator
Owners,CN=Users,DC=yorcdevs,DC=eu",Citrix-User-Groups="CN=Domain
Admins,CN=Users,DC=yorcdevs,DC=eu",Citrix-User-Groups="CN=Enterprise
Admins,CN=Users,DC=yorcdevs,DC=eu",Citrix-User-Groups="CN=Schema
Admins,CN=Users,DC=yorcdevs,DC=eu",Citrix-User-
Groups="CN=Administrators,CN=Builtin,DC=yorcdevs,DC=eu"
rlm_openotp: Reply message: Authentication success
rlm_openotp: Sending Access-Accept
(2) [openotp] = ok
(2) } # Auth-Type OTP = ok
(2) Login OK: [Administrator] (from client any port 0)
(2) Sent Access-Accept Id 55 from 192.168.3.64:1812 to 192.168.3.54:60026 length 0
(2) Citrix-User-Groups = "CN=Organization Management,OU=Microsoft Exchange Security
Groups,DC=yorcdevs,DC=eu"
(2) Citrix-User-Groups = "CN=Group Policy Creator Owners,CN=Users,DC=yorcdevs,DC=eu"
(2) Citrix-User-Groups = "CN=Domain Admins,CN=Users,DC=yorcdevs,DC=eu"
(2) Citrix-User-Groups = "CN=Enterprise Admins,CN=Users,DC=yorcdevs,DC=eu"
(2) Citrix-User-Groups = "CN=Schema Admins,CN=Users,DC=yorcdevs,DC=eu"
(2) Citrix-User-Groups = "CN=Administrators,CN=Builtin,DC=yorcdevs,DC=eu"
(2) Reply-Message := "Authentication success"
(2) Finished request

Below, the OpenOTP logs for the previous authentication. You can see once the authentication factors are validated by OpenOTP,

OpenOTP return the attribute configured on my Administrator account and then the log regarding radius returned attribut

appears : Returning 6 RADIUS reply attributes .

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C New openotpSimpleLogin SOAP
request
[] [] []

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C > Username: Administrator[] [] []
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C > Password: xxxxxxxx[] [] []
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C > Client ID: RadTest[] [] []
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C > Options: RADIUS,-U2F[] [] []
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Registered openotpSimpleLogin

request
[] [] []

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Ignoring memberof values
user out of domain group search base
[] [] [] 2 for

'CN=Administrator,CN=Users,DC=yorcdevs,DC=eu' ()
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Resolved LDAP user:

CN Administrator,CN Users,DC yorcdevs,DC eu
[] [] []

= = = =
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Resolved LDAP groups: group

policy creator owners,domain admins,enterprise admins,schema admins,denied rodc
password replication group

[] [] []

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Started transaction lock
user
[] [] [] for

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Found user fullname:
Administrator
[] [] []

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Found user emails:
Administrator@yorcdevs.eu
[] [] [] 1

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Found user settings:
LoginMode LDAPOTP,OTPType TOKEN,PushLogin Yes,LockTimer 0,MaxTries 3,BlockTime 0,ChallengeMode
1:HOTP-SHA1-6:QN06-
T1M,DeviceType FIDO2,SMSType Normal,SMSMode Ondemand,MailMode Ondemand,PrefetchExpire 10,LastOTPTime

 Items

[] [] [] 47
= = = = = =

= = = = =
[1]
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Found user data:

LastOTP,TokenType,TokenKey,TokenState,TokenID,TokenSerial,Device1Type,Device1Name,Device1Data,Device1State
[] [] [] 10

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Last OTP expired 2020-04-17
18:29:43
[] [] []

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Found registered OTP token
TOTP

[] [] [] 1
()
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Requested login factors: LDAP &

OTP
[] [] []

2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C LDAP password Ok[] [] []
2020-04-17 18:50:45 192.168.3.64 OpenOTP:4JKBFJ4C Authentication challenge

required
[] [] []

2020-04-17 18:50:46 192.168.3.64 OpenOTP:4JKBFJ4C Sent push notification
token
[] [] [] for

#1
2020-04-17 18:50:46 192.168.3.64 OpenOTP:4JKBFJ4C Waiting seconds mobile

response
[] [] [] 27 for

2020-04-17 18:50:56 192.168.3.56 OpenOTP:4JKBFJ4C Received mobile authentication
response from 192.168.3.1
[] [] []

2020-04-17 18:50:56 192.168.3.56 OpenOTP:4JKBFJ4C > Session: cupcbM2KWdmcAxjF[] [] []
2020-04-17 18:50:56 192.168.3.56 OpenOTP:4JKBFJ4C > Password: Bytes[] [] [] 16
2020-04-17 18:50:56 192.168.3.56 OpenOTP:4JKBFJ4C Found authentication session [] [] []

The OpenOTP Web Service (i.e. the OpenOTP main API) supports multiple password check mechanisms. The supported OpenOTP

user login modes are:

0 - AUTO: This the default operating mode where RadiusBridge let OpenOTP handle the passwords automatically. This mode uses

OpenOTP v1.1 SimpleLogin API. This mode is highly recommended for common integrations.

1 - LDAP: OpenOTP needs to checks the user LDAP password only. In this mode, the client system must provide the LDAP

password in the openotpLogin request.

2 - OTP: OpenOTP needs to checks the user OTP password only. In this mode, the client system can provide the OTP password in

the openotpLogin request or no password at all. If no password is provided, then OpenOTP will issue a Challenge-Response and

the client application will have to provide the OTP password in an openotpChallenge request (in a second OpenOTP request).

3 - LDAPOTP: OpenOTP needs to checks both LDAP and OTP passwords. In this mode, the client system can provide the LDAP and

OTP password in the openotpLogin request or only the LDAP password. If only the LDAP is provided, then OpenOTP will issue a

Challenge-Response and the client system will have to provide the OTP password in an openotpChallenge request (in a second

OpenOTP request).

So as a summary, in WebADM, you can have users which are configured with Login Modes: LDAP or OTP or LDAPOTP. There is a

default mode configured in your OpenOTP Web Service application and it can be re-defined per group, user or client application

policies.

Then you have secondary systems like RADIUS (with OpenOTP Radius Bridge), PAM or other integrated systems where you are

more limited in terms of password functionalities due to the specificities of these technologies. So you must consider OpenOTP is

a more generic authentication framework and RADIUS/PAM are OpenOTP authentication subsystems which have specific

password capabilities.

In RADIUS or PAM, you can use password modes 1, 2, 3 or 4 (with the password_mode setting of the RADIUS/PAM configuration).

1. RADIUS/PAM password mode 1: This is the default mode where RADIUS/PAM sends the LDAP password and expects a positive,

negative or challenge response from OpenOTP. Challenge mode is used if the OTP is required and only the LDAP password was

sent. This mode supports both LDAP and LDAPOTP user login modes. If LDAP only is required, then the response is positive or

negative and if OTP is required, then the response is a challenge or negative. In the challenge, RADIUS will return a RADIUS

challenge-response to the client. But RADIUS challenge is not supported by every client. So OpenOTP Radius Bridge supports

some concatenated passwords modes as described below. With PAM integrations, some PAM services such as OpenSSH

support challenge mode but some other such as FTP do not. With password_mode 1, your OpenOTP users must be configured

with LDAPOTP or LDAP Login Mode. It must also be noted that some OpenOTP login methods such as SMS or email work only in

2020-04-17 18:50:56 192.168.3.56 OpenOTP:4JKBFJ4C Found authentication session
started 2020-04-17 18:50:45
[] [] []

2020-04-17 18:50:56 192.168.3.56 OpenOTP:4JKBFJ4C PUSH password Ok token [] [] [] (#1)
2020-04-17 18:50:56 192.168.3.64 OpenOTP:4JKBFJ4C Returning RADIUS reply

attributes
[] [] [] 6

2020-04-17 18:50:56 192.168.3.64 OpenOTP:4JKBFJ4C Updated user data[] [] []
2020-04-17 18:50:56 192.168.3.64 OpenOTP:4JKBFJ4C Sent login success response[] [] []

Appendix A: Password Modes

challenge mode as a first request must trigger the SMS/mail send.

2. RADIUS/PAM password mode 2: This mode is used for logins with OTP password only. Then RADIUS/PAM sends the OTP

directly and no LDAP password. The OpenOTP user must also be configured with OTP Login Mode.

3. RADIUS/PAM password mode 3 and 4: These modes are used for password concatenations. This is useful if the system does not

support the challenge and you want LDAP+OTP. RADIUS/PAM sends LDAP+OTP passwords concatenated and different forms of

concatenation are possible (with a separator character or defined OTP length). This mode supports users with LDAPOTP login

mode but it supports OTP only too. When the separator is missing or length is equal to the defined OTP length, then

RADIUS/PAM assumes only the OTP password was provided and does not send the LDAP password. Password modes 3 and 4

can also be used when the OpenOTP users are configured with LDAPOTP or OTP Login Modes. In RADIUS/PAM, it is important to

notice that you can play with the password_mode settings but also with the user_settings setting. The user_settings allows

passing some OpenOTP user configurations directly from the client system. For example, you can set

user_settings=“OpenOTP.LoginMode=OTP” to tell OpenOTP to work in OTP mode in a PAM configuration for FTP. And this, even

when users are configured with LDAPOTP Login Mode.

4. RADIUS/PAM password mode 5: This mode supports the concatenation of the username and the OTP password. It has been

added for mainly for Yubikey when concatenation is required (no challenge) and the RADIUS client has a limitation in the length

of the RADIUS password attribute.

This manual was prepared with great care. However, RCDevs Security S.A. and the author cannot assume any legal or other liability for possible errors and their consequences. No
responsibility is taken for the details contained in this manual. Subject to alternation without notice. RCDevs Security S.A. does not enter into any responsibility in this respect. The
hardware and software described in this manual is provided on the basis of a license agreement. This manual is protected by copyright law. RCDevs Security S.A. reserves all rights,
especially for translation into foreign languages. No part of this manual may be reproduced in any way (photocopies, microfilm or other methods) or transformed into machine-
readable language without the prior written permission of RCDevs Security S.A. The latter especially applies for data processing systems. RCDevs Security S.A. also reserves all
communication rights (lectures, radio and television). The hardware and software names mentioned in this manual are most often the registered trademarks of the respective
manufacturers and as such are subject to the statutory regulations. Product and brand names are the property of RCDevs Security. © 2023 RCDevs Security S.A., All Rights Reserved

	Radius Bridge Server Radius
	1. Product Documentation
	2. Product Overview
	3. Product Files and Folders
	4. Installation
	4.1 Install with Redhat Repository
	4.2 Install with Debian Repository
	4.3 Install Using the Self-Installer

	5. Configuration
	5.1 Setup Script
	5.2 Radiusd Configuration File
	5.2.1 Server Endpoint URL(s) (server_url)
	5.2.2 Request Routing Policy (server_policy)
	5.2.3 Status Cache Time (status_cache)
	5.2.4 Password Mode (password_mode)
	5.2.5 OTP Length (otp_length)
	5.2.6 Password Separator (password_separator)
	5.2.7 Challenge Suffix (challenge_suffix)
	5.2.8 Domain Separator (domain_separator)
	5.2.9 UPN Domain Support (upn_domain)
	5.2.10 Default Domain (default_domain)
	5.2.11 User Settings (user_settings)
	5.2.12 User Settings Attribute (settings_attribute)
	5.2.13 Data Attribute (data_attribute)
	5.2.14 Data Separator (data_separator)
	5.2.15 Data with Value-pair (data_is_vps)
	5.2.16 RADIUS Reply Attributes (reply_attributes)
	5.2.17 Client ID Attribute (client_attribute)
	5.2.18 Source IP Attribute (source_attribute)
	5.2.19 Context ID Attribute (context_attribute)
	5.2.20 SOAP Timeout (soap_timeout)
	5.2.21 CA Certificate file (ca_file)
	5.2.22 No Success/Failure Messages (no_success_message & no_failure_message)
	5.2.23 No OTP Response Delay (no_response_delay)
	5.2.24 MS DirectAccess Probe (directaccess_probe & daprobe_username & daprobe_password)
	5.2.25 nolock_usernames & cached_usernames & denied_usernames
	5.2.26 U2F Support (u2f_support)

	5.3 RADIUS Clients Configuration File

	6. Radius Bridge and WebADM Client Policies
	6.1 Concatenated Password with Client Policies

	7. PPTP/L2TP VPNs
	8. Troubleshooting
	8.1 Radiusd Status Check
	8.2 Connectivity Check
	8.3 Debug Mode
	8.4 Bad format or wrong RADIUS secret / Shared secret is incorrect
	8.5 Wrong Client Definition
	8.6 Missing MFA Enrolment
	8.7 Incorrect Protocol
	8.8.1 Invalid RADIUS return attributes

	8.8 Radius Returned Attributes
	8.8.2 Check Radius Returned Attributes

	Appendix A: Password Modes

